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Chapter 1

Background

Optimization is the process of identifying the best solution among a set of alternatives (Miet-
tinen, 1999). Whereas single objective optimization employs a single criterion for identifying
the best solution among a set of alternatives, multiobjective optimization employs two or
more criteria. The criteria used to compare solutions are known as objectives. As multiple
objectives can conflict with one another — i.e., improving one objective leads to the deterio-
ration of another — there is, generally speaking, no single optimal solution to multiobjective
problems.

As an example, Figure 1.1 shows the tradeoff between two objectives: (1) cost and (2)
error. The shaded region depicts the set of candidate solutions to this hypothetical problem.
The top-left region contains low cost, high error candidate solutions. The bottom-right
region contains high cost, low error candidate solutions. Between these two extremes lie
the various degrees of tradeoff between the two objectives, where increases in cost lead to
reduced error.

Figure 1.1 demonstrates a fundamental issue in multiobjective optimization. Given that
there is no single optimal solution, rather a multitude of potential solutions with varying
degrees of tradeoff between the objectives, decision-makers are subsequently responsible for
exploring this set of potential solutions and identifying the solution(s) to be implemented.
While ultimately the selection of the final solution is the responsibility of the decision-
maker, optimization tools should assist this decision process to the best of their ability.
For instance, it may prove useful to identify points of diminishing returns. For example,
Figure 1.2 identifies the region where a large increase in cost is necessary to impart a marginal
decrease in error. To perform this type of analysis, it is necessary to provide the decision-
maker with an enumeration or approximation of these tradeoffs. This strategy of enumerating
or approximating the tradeoffs is known as a posteriori optimization (Coello Coello et al.,
2007), and is the focus of this book.
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Figure 1.1: Example of the tradeoff between two objectives: (1) cost and (2) error. A tradeoff
is formed between these two conflicting objectives where increases in cost lead to reduced
error. All figures in this dissertation showing objectives include arrows pointing towards the
ideal optimum.
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Figure 1.2: Example showing the effect of diminishing returns, where a large increase in cost
is necessary to impart a marginal reduction in error.
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Figure 1.3: Example showing how constraints define an infeasible region (the hashed region).
Valid solutions to the optimization problem are only found in the feasible region.

1.1 Multiobjective Problem

We can express the idea of a multiobjective problem (MOP) with M objectives formally as:

minimize
x∈Ω

F (x) = (f1(x), f2(x), . . . , fM(x))

subject to ci(x) = 0, ∀i ∈ E ,
cj(x) ≤ 0, ∀j ∈ I.

(1.1)

We call x the decision variables, which is the vector of variables that are manipulated
during the optimization process:

x =


x1

x2
...
xL

 (1.2)

Decision variables can be defined in a variety of ways, but it is common to see the following
types (Bäck et al., 1997):

• Real-Valued: 2.71

• Binary: 001100010010100001011110101101110011

• Permutation: 4,2,0,1,3

In some applications, it is possible for the number of decision variables, L, to not be a fixed
value. In this book, however, we assume that L is constant for a given problem.

The decision space, Ω, is the set of all decision variables. The MOP may impose restric-
tions on the decision space, called constraints. As an example, in Figure 1.3, a hypothetical
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Figure 1.4: Depiction of the various Pareto dominance regions. These regions are relative
to each solution, which is centered in the figure. The dominated region is inferior in all
objectives, the dominating region is superior in all objectives and the non-dominated region
is superior in one objective but inferior in the other.

constraint would prevent any solutions from exceeding an error threshold. In this manner,
constraints inform the optimization process as to which solutions are infeasible or imprac-
tical. Equation (1.1) shows that zero or more constraints ci(x) can be defined to express
both equality and inequality constraints. The sets E and I define whether the constraint is
an equality or inequality constraint. The set of all decision variables in Ω which are feasible
(i.e., satisfy all constraints) define the feasible region, Λ.

1.2 Pareto Optimality

The notion of optimality used today is adopted from the work of Francis Ysidro Edgeworth
and Vilfredo Pareto (Coello Coello et al., 2007), and is commonly referred to as Pareto
optimality. Pareto optimality considers solutions to be superior or inferior to another solution
only when it is superior in all objectives or inferior in all objectives, respectively. The
tradeoffs in an MOP are captured by solutions which are superior in some objectives but
inferior in others. Such pairs of solutions which are both superior and inferior with respect
to certain objectives are called non-dominated, as shown in Figure 1.4. More formally, the
notion of Pareto optimality is defined by the Pareto dominance relation:

Definition 1 A vector u = (u1, u2, . . . , uM) Pareto dominates another vector v =
(v1, v2, . . . , vM) if and only if ∀i ∈ {1, 2, . . . ,M}, ui ≤ vi and ∃j ∈ {1, 2, . . . ,M}, uj < vj.
This is denoted by u ≺ v.

Two solutions are non-dominated if neither Pareto dominates the other (i.e., u ⊀ v and
v ⊀ u). The set of all non-dominated solutions is captured by the Pareto optimal set and
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Figure 1.5: Shows a hypothetical mapping between a 3-dimensional Pareto optimal set and
its associated 2-dimensional Pareto front. The shaded region in the Pareto front shows the
space dominated by the Pareto front.

the Pareto front. The former contains the decision variables while the latter contains the
objectives.

Definition 2 For a given multiobjective problem, the Pareto optimal set is defined by

P∗ = {x ∈ Ω | ¬∃x′ ∈ Λ, F (x′) ≺ F (x)}

Definition 3 For a given multiobjective problem with Pareto optimal set P∗, the Pareto
front is defined by

PF∗ = {F (x) | x ∈ P∗}

In this dissertation, the Pareto dominance relation is applied to the objectives. For
convenience, we use x ≺ y interchangeably with F (x) ≺ F (y).

Figure 1.5 shows an example Pareto optimal set and Pareto front, and the resulting
mapping between the two. The Pareto optimal set defines the decision variables, whereas
the Pareto front captures the objectives and their tradeoffs via Pareto optimality.

1.3 Multiobjective Evolutionary Algorithms

Evolutionary algorithms (EAs) are a class of search and optimization algorithms inspired
by processes of natural evolution (Holland, 1975). A broad overview of the design and
development of EAs is provided in Bäck et al. (1997). The outline of a simple EA is shown
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Figure 1.6: The outline of a simple EA. EAs begin with an initialization process, where the
initial search population is generated. They next enter a loop of selecting parent individuals
from the search population, applying a recombination operator (such as crossover and muta-
tion in genetic algorithms) to generate offspring, and finally updating the search population
with these offspring using a replacement strategy. This loop is repeated until some termina-
tion condition is met, usually after a fixed number of objective function evaluations (NFE).
Upon termination, the EA reports the set of optimal solutions discovered during search.
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in Figure 1.6. EAs begin with an initialization process, where the initial search population is
generated. They next enter a loop of selecting parent individuals from the search population,
applying a recombination operator to generate offspring, and finally updating the search
population with these offspring using a replacement strategy. This loop is repeated until some
termination condition is met, usually after a fixed number of objective function evaluations
(NFE). Upon termination, the EA reports the set of optimal solutions discovered during
search.

The behavior of the selection, recombination and survival/replacement processes typically
depend on the “class” of EA. For instance, genetic algorithms (GAs) apply crossover and
mutation operators that mimic genetic reproduction via DNA (Holland, 1975). Particle
swarm optimization (PSO) algorithms simulate flocking behavior, where the direction of
travel of each individual is steered towards the direction of travel of surrounding individuals
(Kennedy and Eberhart, 1995). While the behavior of each class may be vastly different,
they all share a common attribute of utilizing a search population.

Their ability to maintain a population of diverse solutions makes EAs a natural choice
for solving MOPs. Early attempts at solving MOPs involved using aggregation-based ap-
proaches (Bäck et al., 1997). In aggregation-based approaches, the decision-maker defines an
aggregate fitness function that transforms the MOP into a single objective problem, which
can subsequently be solved with an EA. Two commonly-used aggregate fitness functions are
linear weighting:

FL(x) =
M∑
i=1

λifi(x), (1.3)

and the weighted Chebyshev method:

FT (x) = max
i=1,2,...,M

(λi |z∗i − fi(x)|) , (1.4)

where λ = (λ1, λ2, . . . , λM) are the weights and z∗ = (z∗1 , z
∗
2 , . . . , z

∗
M) is a reference point

identifying the decision-maker’s goal (note: this reference point need not be a feasible solu-
tion).

Coello Coello et al. (2007) discusses the advantages and disadvantages of aggregate fit-
ness approaches. The primary advantage is the simplicity of the approach and the ability to
exploit existing EAs to solve MOPs. In addition, appropriately defined aggregate fitness func-
tions can provide very good approximations of the Pareto front. However, poorly-weighted
aggregate fitness functions may be unable to find non-convex regions of the Pareto front.
This is problematic since selecting appropriate weights is non-trivial, especially if the rela-
tive worth of each objective is unknown or difficult to quantify. Lastly, in order to generate
multiple Pareto optimal solutions, aggregate fitness approaches need to be run with differing
weights to generate solutions across the entire Pareto front.

These limitations lead to the development of multiobjective evolutionary algorithms
(MOEAs) that search for multiple Pareto optimal solutions in a single run. The first MOEA
to search for multiple Pareto optimal solutions, the Vector Evaluated Genetic Algorithm
(VEGA), was introduced by Schaffer (1984). VEGA was found to have problems similar
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to aggregation-based approaches, such as an inability to generate concave regions of the
Pareto front. Goldberg (1989) was first to suggest the use of Pareto-based selection, but
this concept was not applied until 1993 in the Multiobjective Genetic Algorithm (MOGA)
(Fonseca and Fleming, 1993). Between 1993 and 2003, several first-generation MOEAs were
introduced demonstrating important design concepts such as elitism, diversity maintenance
and external archiving. Notable first-generation algorithms include the Niched-Pareto Ge-
netic Algorithm (NPGA) (Horn and Nafpliotis, 1993), the Non-dominated Sorting Genetic
Algorithm (NSGA) (Srinivas and Deb, 1994), the Strength Pareto Evolutionary Algorithm
(SPEA) (Zitzler and Thiele, 1999), the Pareto-Envelope based Selection Algorithm (PESA)
(Corne and Knowles, 2000) and the Pareto Archived Evolution Strategy (PAES) (Knowles
and Corne, 1999). Many of these MOEAs have since been revised to incorporate more
efficient algorithms and improved design concepts. To date, Pareto-based approaches out-
number aggregate fitness approaches (Coello Coello et al., 2007). For a more comprehensive
overview of the historical development of MOEAs, please refer to the text by Coello Coello
et al. (2007).

1.4 Measuring Quality

When running MOEAs on a MOP, the MOEA outputs an approximation of the Pareto op-
timal set and Pareto front. The approximation of the Pareto front, called the approximation
set, can be used to measure the quality of an MOEA on a particular problem. In some situa-
tions, such as with contrived test problems, a reference set of the globally optimal solutions
may be known. If known, the reference set can be used to measure the absolute performance
of an MOEA. If not known, the approximation sets from multiple MOEAs can be compared
to determine their relative quality.

There is no consensus in the literature of the appropriate procedure with which to com-
pare approximation sets. These procedures, called performance metrics, come in two forms:
(1) unary and (2) binary performance metrics (Zitzler et al., 2002c). Unary performance
metrics produce a single numeric value with which to compare approximation sets. Unary
performance metrics have the advantage of permitting the comparison of approximation sets
without requiring the actual approximation set, as one need only compare the numeric val-
ues. Binary performance metrics, on the other hand, compare pairs of approximation sets,
identifying which of the two approximation sets is superior. In order to allow comparisons
across studies, this book uses only unary performance metrics.

Zitzler et al. (2002b) contend that the number of unary performance metrics required to
determine if one approximation set is preferred over another must be at least the number
of objectives in the problem. Because different MOEAs tend to perform better in different
metrics (Bosman and Thierens, 2003), Deb and Jain (2002) suggest only using metrics for the
two main functional objectives of MOEAs: proximity and diversity. The following outlines
several of the commonly-used unary performance metrics. For details of these performance
metrics see Coello Coello et al. (2007).
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Figure 1.7: Hypervolume measures the volume of the space dominated by the approximation
set, bounded by a reference point. This reference point is typically the nadir point (i.e., the
worst-case value for each objective) of the reference set plus some fixed delta. This delta
ensures extremal points contribute non-zero hypervolume.

Hypervolume As shown in Figure 1.7, the hypervolume metric computes the volume of
the space dominated by the approximation set. This volume is bounded by a reference point,
which is usually set by finding the nadir point (i.e., the worst-case objective value for each
objective) of the reference set plus some fixed increment. This fixed increment is necessary
to allow the extremal points in the approximation set to contribute to the hypervolume.
Knowles and Corne (2002) suggest the hypervolume metric because it is compatible with
the outperformance relations, scale independent, intuitive, and can reflect the degree of
outperformance between two approximation sets.

The major disadvantage of the hypervolume metric is its runtime complexity of O(nM−1),
where n is the size of the non-dominated set. However, Beume and Rudolph (2006) provide
an implementation with runtime O(n log n + nM/2) based on the Klee’s measure algorithm
by Overmars and Yap. This implementation permits computing the hypervolume metric
on moderately sized non-dominated sets up to M = 8 objectives in a reasonable amount of
time. Further improvements by While et al. (2012) improve the expected runtime further,
allowing the efficient calculation of hypervolume with ten or more objectives.

Generational Distance Generational distance (GD) is the average distance from every
solution in the approximation set to the nearest solution in the reference set, as shown
in Figure 1.8. As such, it measures proximity to the reference set. GD by itself can be
misleading, as an approximation set containing a single solution in close proximity to the
reference set produces low GD measurements, and is often combined with diversity measures
in practice (Hadka and Reed, 2012).
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Figure 1.8: Generational distance is the average distance from every solution in the approx-
imation set to the nearest solution in the reference set.
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Figure 1.9: Inverted generational distance is the average distance from every solution in the
reference set to the nearest solution in the approximation set.

10



f2
(x

)

f1(x)

Reference Set

Approximation Set

Distance Measurement

Maximum
Translation

Distance

Figure 1.10: ε+-indicator (also known as the additive ε-indicator) is the smallest distance
ε that the approximation set must be translated by in order to completely dominate the
reference set (Coello Coello et al., 2007).

Inverted Generational Distance As its name indicates, the inverted generational dis-
tance (IGD) is the inverse of GD — it is the average distance from every solution in the
reference set to the nearest solution in the approximation set. IGD measures diversity, as
shown in Figure 1.9, since an approximation set is required to have solutions near each
reference set point in order to achieve low IGD measurements (Coello Coello et al., 2007).

ε+-Indicator The additive ε-indicator (ε+-indicator) measures the smallest distance ε that
the approximation set must be translated by in order to completely dominate the reference
set, as shown in Figure 1.10. One observes that good proximity and good diversity both
result in low ε values, as the distance that the approximation needs to be translated is
reduced. However, if there is a region of the reference set that is poorly approximated by
the solutions in the approximation set, a large ε is required. Therefore, we claim the ε+-
indicator measures the consistency of an approximation set (Hadka and Reed, 2013). An
approximation set must be free from large gaps or regions of poor approximation in order to
be consistent.

Spacing Spacing, shown in Figure 1.11, measures the uniformity of the spacing between
solutions in an approximation set (Coello Coello et al., 2007). An approximation set that is
well-spaced will not contain dense clusters of solutions separated by large empty expanses.
Note that, since spacing does not involve a reference set in its calculation, an approximation
can register good spacing while having poor proximity to the reference set. It is therefore
recommended to use spacing in conjunction with a performance metric for proximity.

In academic works, it is common to see results published using GD, hypervolume and
ε+-indicator. These three metrics record proximity, diversity and consistency, respectively,

11
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Figure 1.11: Spacing measures the uniformity of the spacing between solutions in an approx-
imation set.

which we claim are the three main functional objectives of MOEAs (Fonseca and Fleming,
1996). Figure 1.12 provides a graphical representation of the importance of the ε+-indicator
and consistency. MOEAs are expected to produce high-quality solutions covering the entire
extent of the tradeoff surface, with few gaps or regions of poor approximation.

In order to report these performance metrics consistently, all performance metrics are
normalized. This normalization converts all performance metrics to reside in the range
[0, 1], with 1 representing the optimal value. First, the reference set is normalized by its
minimum and maximum bounds so that all points in the reference set lie in [0, 1]N , the N -
dimensional unit hypercube. Second, each approximation set is normalized using the same
bounds. Third, the performance metrics are calculated using these normalized sets. Finally,
the performance metrics are transformed by the following equations to ensure a value of 1
represents the optimal value achievable by the metric. Hypervolume is transformed with:

M(As
p) = M̂(As

p)/M∗, (1.5)

where M̂ represents the raw metric value. GD and the ε+-indicator are transformed with:

M(As
p) = max(1− M̂(As

p), 0). (1.6)

When solving test problems, the reference set is known analytically. For most real-world
problems, however, the reference set is not available. In these situations, it is often necessary
to construct a reference set from the union of all approximation sets generated during exper-
imentation. Then, performance metrics can be evaluated relative to this combined reference
set.
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Figure 1.12: Demonstrates the importance of ε-indicator as a measure of consistency. (a) A
good approximation set to the reference set, indicated by the dashed line. (b) Generational
distance averages the distance between the approximation set and reference set, reducing
the impact of large gaps. The missing points are shaded light gray. (c) The change in
hypervolume due to a gap is small relative to the entire hypervolume. (d) ε-Indicator easily
identifies the gap, reporting a metric 2-3 times worse in this example.
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1.5 The MOEA Framework

The MOEA Framework is a free and open source Java library for developing and experi-
menting with multiobjective evolutionary algorithms (MOEAs) and other general-purpose
optimization algorithms. We will be using the MOEA Framework throughout this book to
explore multiobjective optimization. Its key features includes:

Fast, reliable implementations of many state-of-the-art multiobjective evo-
lutionary algorithms. The MOEA Framework contains internally NSGA-II, NSGA-
III, ε-MOEA, ε-NSGA-II, PAES, PESA2, SPEA2, IBEA, SMS-EMOA, GDE3, SMPSO,
OMOPSO, CMA-ES, and MOEA/D. These algorithms are optimized for performance, mak-
ing them readily available for high performance applications. By also supporting the JMetal
and PISA libraries, the MOEA Framework provides access to 30 multiobjective optimization
algorithms.

Extensible with custom algorithms, problems and operators. The MOEA Frame-
work provides a base set of algorithms, test problems and search operators, but can also be
easily extended to include additional components. Using a Service Provider Interface (SPI),
new algorithms and problems are seamlessly integrated within the MOEA Framework.

Modular design for constructing new optimization algorithms from existing com-
ponents. The well-structured, object-oriented design of the MOEA Framework library
allows combining existing components to construct new optimization algorithms. And if
needed functionality is not available in the MOEA Framework, you can always extend an
existing class or add new classes to support any desired feature.

Permissive open source license. The MOEA Framework is licensed under the free and
open GNU Lesser General Public License, version 3 or (at your option) any later version.
This allows end users to study, modify, and distribute the MOEA Framework freely.

Fully documented source code. The source code is fully documented and is frequently
updated to remain consistent with any changes. Furthermore, an extensive user manual is
provided detailing the use of the MOEA Framework in detail.

Extensive support available online. As an actively maintained project, bug fixes and
new features are constantly added. We are constantly striving to improve this product. To
aid this process, our website provides the tools to report bugs, request new features, or get
answers to your questions.

Over 1200 test cases to ensure validity. Every release of the MOEA Framework un-
dergoes extensive testing and quality control checks. And, if any bugs are discovered that
survive this testing, we will promptly fix the issues and release patches.
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1.6 Getting Help

This beginner’s guide is the most comprehensive resource for learning about the MOEA
Framework. Additional resources are available on our website at http://www.
moeaframework.org. This website also has links to file bugs or request new fea-
tures. If you still can not find an answer to your question, feel free to contact us at
support@moeaframework.org.
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Chapter 2

Setup and First Example

In this chapter, we will setup the MOEA Framework on your computer and demonstrate a
simple example. These instructions are tailored for Windows users, but similar steps can be
taken to install the MOEA Framework on Linux or Mac OS.

2.1 Installing Java

The MOEA Framework runs on Java version 6 or any later version. Since we will need to
compile examples, you will need to install the Java Development Kit (JDK) for version 6 or
later. For Windows users, we recommend using Oracle’s JDK available at http://www.
oracle.com/technetwork/java/javase/. Make sure you download the JDK and
not the JRE (Java Runtime Environment).

2.2 Installing Eclipse

If this is your first time using the MOEA Framework, we suggest using Eclipse to build
projects. Eclipse is a free development environment for writing, debugging, testing, and
running Java programs. First, download Eclipse from http://www.eclipse.org/. To
install Eclipse, simply extract the ZIP archive to a location on your computer (e.g., your
desktop). Within the extracted folder, run eclipse.exe. First-time users of Eclipse
may be prompted to select a workspace location. The default location is typically fine. Click
the checkbox to no longer show this dialog and click Ok.

2.3 Setting up the MOEA Framework

We recommend starting with this book’s supplemental materials, which includes a full instal-
lation of the MOEA Framework and all of the code samples found in this book. The supple-
mental materials can be downloaded by following this link: http://bit.ly/1N5sHjO.
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Note: that ends with the letter O and not the number 0. As you read this book, find the
appropriate Java file within the book folder to follow along.

Alternatively, you can download the MOEA Framework’s compiled binaries from http:
//www.moeaframework.org/ and manually type in the examples. The compiled binaries
are distributed as a compressed TAR file (.tar.gz) and need to be extracted. We recommend
using 7-Zip, a free and open source program, which can be downloaded from http://www.
7-zip.org/. Extract to your Desktop or any other convenient location.

Next, we need to create a project within Eclipse. Select File → New Java Project from
the menu.

In the window that appears, uncheck ”Use default location”. Click the ”Browse...” button
and select the extracted MOEA Framework folder. Click Finish.
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The MOEA Framework project will now appear within the ”Package Explorer” in Eclipse,
as shown below.

If you are using the supplemental materials, you can skip down to the next section titled
“Your First Example.” Otherwise, we will now create a source folder were our examples will
reside. Right-click on the project and select New → Source Folder.
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Give the new source folder the name ”book” and click Finish.

2.4 Your First Example

In Java, packages are used to organize source code into a hierarchical structure. We will
organize the examples from each chapter into its own package. Thus, for the first chapter,
we will create a package named chapter2. Right-click on the source folder we just created
and select New → Package.
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Enter the name chapter2 and click Finish.

Finally, we create the Java file for the actual code. In Java, these are called classes. Right-
click the chapter2 folder and select New → Class.
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Type the name SchafferProblem and click Finish.

At this point, your Eclipse workspace will contain one Java file named
SchafferProblem.java and that file will be opened in the text editor within

Eclipse, as shown below.
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Now we can begin defining the problem.

1 package chapter2;
2

3 import org.moeaframework.core.Solution;
4 import org.moeaframework.core.variable.EncodingUtils;
5 import org.moeaframework.problem.AbstractProblem;
6

7 public class SchafferProblem extends AbstractProblem {
8

9 public SchafferProblem() {
10 super(1, 2);
11 }
12

13 @Override
14 public void evaluate(Solution solution) {
15 double x = EncodingUtils.getReal(solution.getVariable(0));
16

17 solution.setObjective(0, Math.pow(x, 2.0));
18 solution.setObjective(1, Math.pow(x - 2.0, 2.0));
19 }
20

21 @Override
22 public Solution newSolution() {
23 Solution solution = new Solution(1, 2);
24 solution.setVariable(0, EncodingUtils.newReal(-10.0, 10.0));
25 return solution;
26 }
27

28 }

MOEAFramework/book/chapter2/SchafferProblem.java
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The anatomy of a problem is as follows. First, it must implement the Problem inter-
face. Rather that implement the Problem interface directly, it is often more convenient
to extend the AbstractProblem class, as seen on Line 7. Three methods are required
when extending AbstractProblem: the constructor, newSolution, and evaluate.
The constructor, shown on lines 9-11, is responsible for initializing the problem. For this
problem, we call super(1, 2) to indicate this problem will consist of one decision variable
and two objectives. The newSolution method, shown on lines 14-18, generates a proto-
type solution for the problem. A prototype solution describes each decision variable, and
were applicable, any bounds on the variables. For this problem, we create a single real-valued
decision variable bounded by [−10, 10]. Thus, on line 15 we create the prototype solution
with one variable and two objectives (e.g., new Solution(1, 2)), assign the variable
on line 16 (e.g., solution.setVariable(0, EncodingUtils.newReal(-10.0,
10.0));), and return the solution on line 17. Finally, we define the evaluate method on
lines 21-26, which is responsible for computing the objectives for a given candidate solution.
On line 22, we read the value of the decision variable (e.g., EncodingUtils.getReal(
solution.getVariable(0))), and on lines 24 and 25 evaluate the two objectives. For
the Schaffer problem, the two objectives are f1(x) = x2 and f2(x) = (x − 2)2. Type this
code into the SchafferProblem.java file and save.

At this point, the problem is defined, but we also need to create the code to solve the
problem. To begin, create a new class called RunSchafferProblem with the following
code:

1 package chapter2;
2

3 import org.moeaframework.Executor;
4 import org.moeaframework.core.NondominatedPopulation;
5 import org.moeaframework.core.Solution;
6 import org.moeaframework.core.variable.EncodingUtils;
7

8 public class RunSchafferProblem {
9

10 public static void main(String[] args) {
11 NondominatedPopulation result = new Executor()
12 .withAlgorithm("NSGAII")
13 .withProblemClass(SchafferProblem.class)
14 .withMaxEvaluations(10000)
15 .run();
16

17 for (Solution solution : result) {
18 System.out.printf("%.5f => %.5f, %.5f\n",
19 EncodingUtils.getReal(solution.getVariable(0)),
20 solution.getObjective(0),
21 solution.getObjective(1));
22 }
23 }
24

25 }
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MOEAFramework/book/chapter2/RunSchafferProblem.java

On line 10, we create a the main method. In Java, main methods are the starting points
for applications. This is the first method that is invoked when we run the application. To
solve our problem, we will use the Executor class. The executor is responsible for creating
instances of optimization algorithms and using them to solve problems. It is a sophisticated
class, but at the bare minimum it requires three pieces of information: 1) the name of the
optimization algorithm, 2) the problem, and 3) the maximum number of function evaluations
(NFE) permitted to solve the problem. We set the values on lines 12-14 and call run() on
line 15 to solve the problem. The result, a Pareto approximation set, is saved on line 10 to
a NondominatedPopulation. Lines 17-22 format and print the Pareto approximate set
to the screen. Each line on the output is a Pareto approximate solution where the left-most
value is the decision variable and the two values to the right of => are the objective values.

Run this application by right-clicking the file RunSchafferProblem.java and se-
lecting Run → Java Application.

The output will appear in the Console within Eclipse and should appear similar to below.
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Congratulations, you have just successfully optimized a problem using the MOEA Frame-
work!

2.5 Running from Command Line

If you are not using Eclipse to run these examples, they can also be run manually from
the command line. On Windows, open a new Command Prompt window and change the
directory to the MOEA Framework folder. Then type the following commands:

javac -cp "lib/*;book" book/chapter2/SchafferProblem.java
javac -cp "lib/*;book" book/chapter2/RunSchafferProblem.java
java -cp "lib/*;book" chapter2.RunSchafferProblem

The first two lines compile the two class files we created. Note the use of the -cp "
lib/*;book" argument that specifies the Java classpath. This tells Java where to locate
any referenced files. We will be referencing files in the lib folder, which contains all of the
MOEA Framework libraries, and the book folder, which contains the files we are compiling.
The last line runs the example. We again must specify the classpath, but note that we are
running the class chapter2.RunShafferProblem. This is the full class path for our
problem. It consists of the package (e.g., chapter2), followed by a period, followed by the
class name (e.g., RunSchafferProblem).

2.6 Plotting Results

In the previous example, we output the two objectives to the console. Outputting the raw
data like this is useful as you can save the data to a text file, load the data into Excel, etc.
For problems like this with only two objectives, we can plot the solutions as points in a
scatter plot, as shown below:

1 package chapter2;
2

3 import org.moeaframework.Executor;
4 import org.moeaframework.analysis.plot.Plot;
5 import org.moeaframework.core.NondominatedPopulation;
6
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7 public class PlotSchafferProblem {
8

9 public static void main(String[] args) {
10 NondominatedPopulation result = new Executor()
11 .withAlgorithm("NSGAII")
12 .withProblemClass(SchafferProblem.class)
13 .withMaxEvaluations(10000)
14 .run();
15

16 new Plot()
17 .add("NSGAII", result)
18 .show();
19 }
20

21 }

MOEAFramework/book/chapter2/PlotSchafferProblem.java

Running this code produces the following plot:

Now we can see the shape of the Pareto approximation set produced by the optimization
algorithm.
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Chapter 3

Constrained Optimization

In the previous chapter, we solved the two objective Schaffer problem. This was an un-
constrained problem, meaning that any solution we generate is a feasible design. Many
real-world problems have constraints, either caused by physical limitations (e.g., maximum
operating temperature), monetary (e.g., available capital), are risk-based (e.g., maximum
failure rate for a product), etc. In general, there are two types of constraints: equality and
inequality. Equality constraints are of the form g(x) = c for some constant c. Inequality
constraints are of the form h(x) ≥ d for some constant d. For example, takes the Srinivas
problem as defined below.

On the left, we see the two objective functions that we are minimizing. On the right, we
have the constraints. Note they are all inequality constraints.

The MOEA Framework represents constraints a bit differently. Instead of needing to
know the constraint formula, the MOEA Framework simply says “set the constraint value
to 0 if the solution is feasible, set it to any non-zero value if the constraint is violated.” For
example, take the constraint 0 ≥ x − 3y + 10. You would typically express this constraint
within the MOEA Framework using the ternary if-else expression x - 3y + 10 <= 0 ?
0 : x - 3y + 10. This expression begins with the comparator x - 3y + 10 <= 0

that tests if the constraint is satisfied. If satisfied, the resulting is 0. Otherwise, the result is
x - 3y + 10. Why do we set the value to x - 3y + 10 when the constraint is violated?
It is useful in optimization to know how far a solution is from the feasibility boundary. By
setting the constraint value to smaller values the closer a solution likes in proximity to the
feasibility boundary, the optimization algorithm can guide search towards the feasible region.
For the Srinivas problem, we would evaluate the problem as follows:

1 public void evaluate(Solution solution) {
2 double x = EncodingUtils.getReal(solution.getVariable(0));
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3 double y = EncodingUtils.getReal(solution.getVariable(1));
4 double f1 = Math.pow(x - 2.0, 2.0) + Math.pow(y - 1.0, 2.0) + 2.0;
5 double f2 = 9.0*x - Math.pow(y - 1.0, 2.0);
6 double c1 = Math.pow(x, 2.0) + Math.pow(y, 2.0) - 225.0;
7 double c2 = x - 3.0*y + 10.0;
8

9 solution.setObjective(0, f1);
10 solution.setObjective(1, f2);
11 solution.setConstraint(0, c1 <= 0.0 ? 0.0 : c1);
12 solution.setConstraint(1, c2 <= 0.0 ? 0.0 : c2);
13 }

Lets try another example. Suppose we have the constraint x2 + y ≤ 10. The trick here
is to remember that we want to assign non-zero values when the constraint is violated. It is
useful to convert the constraint into the form h(x) ≤ 0, or x2 + y − 10 ≤ 0. The resulting
constraint calculation would be:

1 double c = Math.pow(x, 2.0) + y - 10;
2 solution.setConstraint(0, c <= 0.0 ? 0.0 : c);

Great! You’ll probably notice that there is an additional constraint in our Srinivas
problem: −20 ≤ x, y ≤ 20. This is different from equality and inequality constraints because
these are constraints placed on the decision variables. In the MOEA Framework, we do not
need to explicitly specify this as a constraint. As shown below, we set these bounds when
defining the decision variables.

1 public Solution newSolution() {
2 Solution solution = new Solution(2, 2, 2);
3

4 solution.setVariable(0, EncodingUtils.newReal(-20.0, 20.0));
5 solution.setVariable(1, EncodingUtils.newReal(-20.0, 20.0));
6

7 return solution;
8 }

3.1 Constrained Optimization Example

Ok, now we can fully define the constrained Srinivas problem. From the problem statement,
we see that the Srinivas problem has two decision variables, two objectives, and two con-
straints. The two decision variables are real-valued and bounded by [−20, 20]. The equations
for the objectives and constraints are given.
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Within Eclipse, create a new package named chapter3 and create the class
SrinivasProblem. Enter the following code:

1 package chapter3;
2

3 import org.moeaframework.core.Solution;
4 import org.moeaframework.core.variable.EncodingUtils;
5 import org.moeaframework.problem.AbstractProblem;
6

7 public class SrinivasProblem extends AbstractProblem {
8

9 public SrinivasProblem() {
10 super(2, 2, 2);
11 }
12

13 @Override
14 public void evaluate(Solution solution) {
15 double x = EncodingUtils.getReal(solution.getVariable(0));
16 double y = EncodingUtils.getReal(solution.getVariable(1));
17 double f1 = Math.pow(x - 2.0, 2.0) + Math.pow(y - 1.0, 2.0) + 2.0;
18 double f2 = 9.0*x - Math.pow(y - 1.0, 2.0);
19 double c1 = Math.pow(x, 2.0) + Math.pow(y, 2.0) - 225.0;
20 double c2 = x - 3.0*y + 10.0;
21

22 solution.setObjective(0, f1);
23 solution.setObjective(1, f2);
24 solution.setConstraint(0, c1 <= 0.0 ? 0.0 : c1);
25 solution.setConstraint(1, c2 <= 0.0 ? 0.0 : c2);
26 }
27

28 @Override
29 public Solution newSolution() {
30 Solution solution = new Solution(2, 2, 2);
31

32 solution.setVariable(0, EncodingUtils.newReal(-20.0, 20.0));
33 solution.setVariable(1, EncodingUtils.newReal(-20.0, 20.0));
34

35 return solution;
36 }
37

38 }

MOEAFramework/book/chapter3/SrinivasProblem.java

We already explained the components of this code. The primary difference is the addition
of the constraints. First, on lines 10 and 28, we pass in three arguments instead of two.
The third argument indicates the number of constraints (e.g., super(2, 2, 2) and new
Solution(2, 2, 2)). Secondly, on lines 23-24 we set the constraints. Again, the

constraint is 0 when a solution is feasible.

As before, we also need a class to run this example. Create the class
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RunSrinivasProblem with the code below:

1 package chapter3;
2

3 import org.moeaframework.Executor;
4 import org.moeaframework.core.NondominatedPopulation;
5 import org.moeaframework.core.Solution;
6

7 public class RunSrinivasProblem {
8

9 public static void main(String[] args) {
10 NondominatedPopulation result = new Executor()
11 .withAlgorithm("NSGAII")
12 .withProblemClass(SrinivasProblem.class)
13 .withMaxEvaluations(10000)
14 .run();
15

16 for (Solution solution : result) {
17 if (!solution.violatesConstraints()) {
18 System.out.format("%10.3f %10.3f%n",
19 solution.getObjective(0),
20 solution.getObjective(1));
21 }
22 }
23 }
24

25 }

MOEAFramework/book/chapter3/RunSrinivasProblem.java

There are a few changes to this code from the previous chapter. First, on line 12 we
use the new SrinivasProblem class. Second, on line 17, we check if the solutions are
feasible prior to printing the output. Most algorithms will only store feasible solutions, but
it’s always good practice to check if a solution violates any constraints. With this code
input, you can then run the RunSrinivasProblem class and view the output. We could
alternatively plot the results for easier viewing:

1 package chapter3;
2

3 import org.moeaframework.Executor;
4 import org.moeaframework.analysis.plot.Plot;
5 import org.moeaframework.core.NondominatedPopulation;
6

7 public class PlotSrinivasProblem {
8

9 public static void main(String[] args) {
10 NondominatedPopulation result = new Executor()
11 .withAlgorithm("NSGAII")
12 .withProblemClass(SrinivasProblem.class)
13 .withMaxEvaluations(10000)
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14 .run();
15

16 new Plot()
17 .add("NSGAII", result)
18 .show();
19 }
20

21 }

MOEAFramework/book/chapter3/PlotSrinivasProblem.java

which produces the following plot:

3.2 The Knapsack Problem

Ok, now for a more complex example. Have you ever heard of the famous Knapsack prob-
lem? If not, check out the Wikipedia page at http://en.wikipedia.org/wiki/
Knapsack_problem for more details. This is a famous combinatorial problem that in-
volves choosing which items to place in a knapsack to maximize the value of the items
carried without exceeding the weight capacity of the knapsack. More formally, we are given
N items. Each item has a profit, P (i), and weight, W (i), for i = 1, 2, . . . , N . Let d(i)
represent our decision to place the i-th item in the knapsack, where d(i) = 1 if the item is
put into the knapsack and d(i) = 0 otherwise. If the knapsack has a weight capacity of C,
then the knapsack problem is defined as:
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Maximize
N∑
i=1

d(i) ∗ P (i) such that
N∑
i=1

d(i) ∗W (i) ≤ C

The summation on the left (which we are maximizing) calculates the total profit we gain
from the items placed in the knapsack. The summation on the right side is a constraint that
ensures the items placed in the knapsack do not exceed the weight capacity of the knapsack.

Lets make it a little more interesting, after all this is a library for multiobjective opti-
mization. Instead of having one knapsack, lets have two (in fact, this can be generalized to
any number of knapsacks). Additionally, the profit and weights vary depending on which
knapsack is holding each item. For example, an item will have a profit of $25 and a weight
of 5 pounds in the first knapsack, but will have a profit of $15 and a weight of 8 pounds in
the second knapsack. (It may seem unusual that the weight changes, but that is how the
problem is defined in the literature.) Thus, profit is now defined by P (i, j) and weight by
W (i, j), where the j = 1, 2 term is the knapsack index. Lastly, each knapsack defines its own
capacity, C1 and C2. Combining all of this, the multiobjective knapsack problem is formally
defined as:

Maximize
∑N

i=1 d(i) ∗ P (i, 1) such that
∑N

i=1 d(i) ∗W (i, 1) ≤ C1 and

Maximize
∑N

i=1 d(i) ∗ P (i, 2) such that
∑N

i=1 d(i) ∗W (i, 2) ≤ C2

This problem is a bit different from the others we have seen thus far. For the knapsack
problem, we are picking items to fit into the knapsack. The bit string representation works
well for situation where we are making many yes/no decisions (yes if it is included in the
knapsack). For example, if we have 5 items, we can represent the decision to include each
item using a bit string with 5 bits. Each bit in the string corresponds to an item, and is set
to 1 if the item is included and 0 if the item is excluded. For instance, the bit string 00110
would place items 3 and 4 inside the knapsacks, excluding the rest. Our newSolution
method is defined as follows:

1 public Solution newSolution() {
2 Solution solution = new Solution(1, nsacks, nsacks);
3 solution.setVariable(0, EncodingUtils.newBinary(nitems));
4 return solution;
5 }

Observe on line 3 how we create the bit string representation (also called a binary string)
with nitems bits. Also note that the 5 bits are contained within a single decision variable,
so we define this problem with only a single decision variable.

Now for the evaluate method. Summing up the profits is straightforward. But there
is also a constraint we must deal with. We must ensure the weight of the items does not
exceed the capacity of the knapsack. Thus, we need to sum up the weights of the selected
items and compare to the capacity. The resulting method is shown below:
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1 public void evaluate(Solution solution) {
2 boolean[] d = EncodingUtils.getBinary(solution.getVariable(0));
3 double[] f = new double[nsacks];
4 double[] g = new double[nsacks];
5

6 // calculate the profits and weights for the knapsacks
7 for (int i = 0; i < nitems; i++) {
8 if (d[i]) {
9 for (int j = 0; j < nsacks; j++) {

10 f[j] += profit[j][i];
11 g[j] += weight[j][i];
12 }
13 }
14 }
15

16 // check if any weights exceed the capacities
17 for (int j = 0; j < nsacks; j++) {
18 if (g[j] <= capacity[j]) {
19 g[j] = 0.0;
20 } else {
21 g[j] = g[j] - capacity[j];
22 }
23 }
24

25 // negate the objectives since Knapsack is maximization
26 solution.setObjectives(Vector.negate(f));
27 solution.setConstraints(g);
28 }

Note the comment on line 25. We are negating the objective values since our objectives
are being maximized. The MOEA Framework is designed to minimize objectives. To handle
maximized objectives, simply negate the value. Minimizing the negated value is equivalent
to maximizing the original value. Take caution, however, as the output from the MOEA
Framework will include the negative values. You should always negate the outputs to restore
them to their correct sign.

Below is the full implementation of the Knapsack problem. We have configured this
instance for a simple problem with 2 knapsacks and 5 items. Copy this code into the
KnapsackProblem class.

1 package chapter3;
2

3 import org.moeaframework.core.Solution;
4 import org.moeaframework.core.variable.EncodingUtils;
5 import org.moeaframework.problem.AbstractProblem;
6 import org.moeaframework.util.Vector;
7

8 public class KnapsackProblem extends AbstractProblem {
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9

10 /**
11 * The number of sacks.
12 */
13 public static int nsacks = 2;
14

15 /**
16 * The number of items.
17 */
18 public static int nitems = 5;
19

20 /**
21 * Entry {@code profit[i][j]} is the profit from including item {@code j}
22 * in sack {@code i}.
23 */
24 public static int[][] profit = {
25 {2, 5},
26 {1, 4},
27 {6, 2},
28 {5, 1},
29 {3, 3}
30 };
31

32 /**
33 * Entry {@code weight[i][j]} is the weight incurred from including item
34 * {@code j} in sack {@code i}.
35 */
36 public static int[][] weight = {
37 {3, 3},
38 {4, 2},
39 {1, 5},
40 {5, 3},
41 {5, 2}
42 };
43

44 /**
45 * Entry {@code capacity[i]} is the weight capacity of sack {@code i}.
46 */
47 public static int[] capacity = { 10, 8 };
48

49 public KnapsackProblem() {
50 super(1, nsacks, nsacks);
51 }
52

53 public void evaluate(Solution solution) {
54 boolean[] d = EncodingUtils.getBinary(solution.getVariable(0));
55 double[] f = new double[nsacks];
56 double[] g = new double[nsacks];
57

58 // calculate the profits and weights for the knapsacks
59 for (int i = 0; i < nitems; i++) {
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60 if (d[i]) {
61 for (int j = 0; j < nsacks; j++) {
62 f[j] += profit[j][i];
63 g[j] += weight[j][i];
64 }
65 }
66 }
67

68 // check if any weights exceed the capacities
69 for (int j = 0; j < nsacks; j++) {
70 if (g[j] <= capacity[j]) {
71 g[j] = 0.0;
72 } else {
73 g[j] = g[j] - capacity[j];
74 }
75 }
76

77 // negate the objectives since Knapsack is maximization
78 solution.setObjectives(Vector.negate(f));
79 solution.setConstraints(g);
80 }
81

82 public Solution newSolution() {
83 Solution solution = new Solution(1, nsacks, nsacks);
84 solution.setVariable(0, EncodingUtils.newBinary(nitems));
85 return solution;
86 }
87

88 }

MOEAFramework/book/chapter3/KnapsackProblem.java

Next, copy the following code into the RunKnapsackProblem class.

1 package chapter3;
2

3 import java.io.IOException;
4

5 import org.moeaframework.Executor;
6 import org.moeaframework.core.NondominatedPopulation;
7 import org.moeaframework.core.Solution;
8 import org.moeaframework.examples.ga.knapsack.Knapsack;
9 import org.moeaframework.util.Vector;

10

11 public class RunKnapsackProblem {
12

13 public static void main(String[] args) throws IOException {
14 NondominatedPopulation result = new Executor()
15 .withProblemClass(Knapsack.class)
16 .withAlgorithm("NSGAII")
17 .withMaxEvaluations(10000)
18 .distributeOnAllCores()
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19 .run();
20

21 for (int i = 0; i < result.size(); i++) {
22 Solution solution = result.get(i);
23 double[] objectives = solution.getObjectives();
24

25 // negate objectives to return them to their maximized form
26 objectives = Vector.negate(objectives);
27

28 System.out.println("Solution " + (i+1) + ":");
29 System.out.println(" Sack 1 Profit: " + objectives[0]);
30 System.out.println(" Sack 2 Profit: " + objectives[1]);
31 System.out.println(" Binary String: " + solution.getVariable(0));
32 }
33 }
34

35 }

MOEAFramework/book/chapter3/RunKnapsackProblem.java

As before, we specify the problem class when creating the Executor. Observe that
we do not need to thell the algorithm about any new features of our problem. It auto-
matically detects that the problem uses a bit string representation and constructs the algo-
rithm with the appropriate crossover and mutation operators. Also note on line 18 that we
call distributeOnAllCores(), which enables multithreading. For problems with time-
consuming evaluations, you can gain substantial performance improvements by spreading the
work across multiple processors on your computer. The MOEA Framework automatically
handles this for you.

Running this example will produce output similar to the following. Since this is a mul-
tiobjective problem, there is typically no single optimal solution. Instead, there are several
options, all equally “good”. Solution 1 has the maximum profit of 9.0 for Sack 1, but the
worst profit of 5.0 for Sack 2.

Solution 1:
Sack 1 Profit: 9.0
Sack 2 Profit: 5.0
Binary String: 01010

Solution 2:
Sack 1 Profit: 5.0
Sack 2 Profit: 8.0
Binary String: 00110

Solution 3:
Sack 1 Profit: 7.0
Sack 2 Profit: 6.0
Binary String: 00011

Solution 4:
Sack 1 Profit: 6.0
Sack 2 Profit: 7.0
Binary String: 01100
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In this Knapsack problem, we hard-coded the profits, weights, and capacities. A more
generalized implementation is available with the MOEA Framework in the examples folder.

3.3 Feasibility

You may encounter problems that are severely constrained where the majority of the search
space is infeasible. Under these circumstances, it becomes very challenging for an optimiza-
tion algorithm to find feasible solutions. When this happens, the results from the MOEA
Framework will contain only infeasible solutions. It is important to check if solutions are
infeasible with the solution.violatesConstraints() method. This can be a chal-
lenging problem to address. In some cases, the problem can be reformulated or represented
in a different way to relax the constraints. This is outside the scope of this beginner’s guide,
but more details can be found in academic literature.
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Chapter 4

Choice of Optimization Algorithm

Up to this point, we have been using one of the most popular MOEAs: NSGA-II. NSGA-II
is frequently used in practice as it shows strong performance on a range of problems and has
been studied extensively in the academic literature. However, the MOEA Framework is not
limited to these algorithms. This chapter will discuss how to run different algorithms, how
to parameterize the algorithms, and how to compare the performance of algorithms.

4.1 Running Different Algorithms

The MOEA Framework contains an assortment of optimization algorithms for your use,
each identified by name. For example, the following optimizes the Schaffer problem using
the NSGA-II algorithm:

1 NondominatedPopulation result = new Executor()
2 .withProblemClass(SchafferProblem.class)
3 .withAlgorithm("NSGAII")
4 .withMaxEvaluations(10000)
5 .run();

Likewise, we can optimize the problem with GDE3 as demonstrated below. Observe that
we only needed to change the name of the algorithm.

1 NondominatedPopulation result = new Executor()
2 .withProblemClass(SchafferProblem.class)
3 .withAlgorithm("GDE3")
4 .withMaxEvaluations(10000)
5 .run();

The MOEA Framework handles the rest. It ensures the algorithms are configured appro-
priately for the given problem or issues a warning or error if it detects any problems. The
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full code to run this example and plot the results is provided below.

1 package chapter4;
2

3 import java.io.IOException;
4

5 import org.moeaframework.Executor;
6 import org.moeaframework.analysis.plot.Plot;
7 import org.moeaframework.core.NondominatedPopulation;
8 import chapter2.SchafferProblem;
9

10 public class RunDifferentAlgorithms {
11

12 public static void main(String[] args) throws IOException {
13 NondominatedPopulation result1 = new Executor()
14 .withProblemClass(SchafferProblem.class)
15 .withAlgorithm("NSGAII")
16 .withMaxEvaluations(10000)
17 .run();
18

19 NondominatedPopulation result2 = new Executor()
20 .withProblemClass(SchafferProblem.class)
21 .withAlgorithm("GDE3")
22 .withMaxEvaluations(10000)
23 .run();
24

25 new Plot()
26 .add("NSGAII", result1)
27 .add("GDE3", result2)
28 .show();
29 }
30

31 }

MOEAFramework/book/chapter4/RunDifferentAlgorithms.java

The output, which shows the two algorithms colored red and blue, is shown below. Visually,
we can see the two algorithms produce nearly identical results. This visual approach is useful
to quickly observe the relative performance of two or more algorithms. Later in this chapter
we’ll demonstrate how to statistically compare the performance of algorithms.
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Note that not all algorithms can solve all problems. Table 4.1 provides a list of the algorithms.
The first column provides the name (which you specify in the string to withAlgorithm
), and the remaining columns indicate if the algorithm supports different encodings and
constraints.

In addition to these algorithms, which are implemented natively within the MOEA
Framework, algorithms from the population JMetal and PISA libraries can also be exe-
cuted within the MOEA Framework with little additional work. Refer to the User Manual
for additional details.

4.2 Parameterization

In addition to selecting the specific algorithm to use, each algorithm has its own parameters
that can be customized. If left untouched, the algorithm uses default parameters based on
best practices from the literature. All parameters can also be overridden. Appendix A lists
the parameters for each algorithm, provides a short description, and indicates the default
value. For example, lets compare the default parameters for NSGA-II to a custom set
of parameters. Here, we are reducing the population size from 100 (the default) to 50 and
increasing the distribution indices which affect how offspring are generated. We would expect
these custom parameters to perform worse in practice, but lets see for ourselves:

1 package chapter4;
2
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3 import org.moeaframework.Executor;
4 import org.moeaframework.analysis.plot.Plot;
5 import org.moeaframework.core.NondominatedPopulation;
6

7 import chapter2.SchafferProblem;
8

9 public class ParameterizingAlgorithms {
10

11 public static void main(String[] args) {
12 NondominatedPopulation result1 = new Executor()
13 .withProblemClass(SchafferProblem.class)
14 .withAlgorithm("NSGAII")
15 .withMaxEvaluations(10000)
16 .run();
17

18 NondominatedPopulation result2 = new Executor()
19 .withProblemClass(SchafferProblem.class)
20 .withAlgorithm("NSGAII")
21 .withMaxEvaluations(10000)
22 .withProperty("populationSize", 50)
23 .withProperty("sbx.rate", 1.0)
24 .withProperty("sbx.distributionIndex", 250.0)
25 .withProperty("pm.rate", 0.0)
26 .withProperty("pm.distributionIndex", 300.0)
27 .run();
28

29 new Plot()
30 .add("NSGAII-Paramerized", result2)
31 .add("NSGAII", result1)
32 .show();
33 }
34

35 }

MOEAFramework/book/chapter4/ParameterizingAlgorithms.java

As shown below, the custom parameters (shown in red) does not approximate the Pareto
surface as well as the default parameters (shown in blue). The smaller population size results
in fewer points, and the larger distribution indices prevents the algorithm from effectively
generating new offspring.
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Many optimization algorithms support customizable crossover and mutation operators,
and these operators have their own parameters founds in Appendix B. For example, NSGA-
II has a single parameter, "populationSize" and uses the Simulated Binary Crossover
and Polynomial Mutation operators for real-valued problems. These two operators have two
parameters each. We can customize these parameters as demonstrated below.

1 NondominatedPopulation result = new Executor()
2 .withProblemClass(SchafferProblem.class)
3 .withAlgorithm("NSGAII")
4 .withMaxEvaluations(10000)
5 .withProperty("populationSize", 200)
6 .withProperty("sbx.rate", 0.9)
7 .withProperty("sbx.distributionIndex", 25.0)
8 .withProperty("pm.rate", 0.1)
9 .withProperty("pm.distributionIndex", 30.0)

10 .run();

Some algorithms also allow overriding which operators are used. For example, we can
choose to use Parent Centric Crossover with NSGA-II:

1 NondominatedPopulation result = new Executor()
2 .withProblemClass(SchafferProblem.class)
3 .withAlgorithm("NSGAII")
4 .withMaxEvaluations(10000)
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5 .withProperty("populationSize", 200)
6 .withProperty("operator", "pcx")
7 .withProperty("pcx.parents", 5)
8 .withProperty("pcx.offspring", 1)
9 .withProperty("pcx.eta", 0.1)

10 .withProperty("pcx.zeta", 0.1)
11 .run();

Note the use of the "operator" parameter to specify the use of Parent Centric
Crossover with the string "pcx". Refer to Appendix B for a list of available operators
and their string abbreviations. Operators can be combined using the + symbol. For exam-
ple, by default we use Simulated Binary Crossover (SBX) and Polynomial Mutation (PM),
which can be expressed as "sbx+pm". This says to first apply Simulated Binary Crossover
on two parents to produce two offspring, then apply Polynomial Mutation to each offspring.
Alternatively, we could combine Differential Evolution (DE) and Polynomial Mutation (PM)
using the string "de+pm". This is the operator used by GDE3, but as shown below, it can
also be used with NSGA-II:

1 NondominatedPopulation result = new Executor()
2 .withProblemClass(SchafferProblem.class)
3 .withAlgorithm("NSGAII")
4 .withProperty("operator", "de+pm")
5 .withMaxEvaluations(10000)
6 .run();

Several precautions should be observed. First, not all combinations of operators are
valid. You will see an exception if you request an invalid combination, typically saying
invalid number of parents. See the User Manual for more details. Second, be careful when
passing in the parameters. Parameter names are case sensitive. "populationsize" is
not the same as "populationSize". Additionally, you will not be notified if an invalid
parameter is provided, it will simply be ignored.

4.3 Comparing Algorithms

In academic work, it is often useful to compare the performance of two or more MOEAs. For
instance, you could have developed a new search operator or algorithm and wish to compare
the performance against existing MOEAs to determine the level of improvement.

The MOEA Framework provides the Analyzer class, which is typically used in con-
junction with the Executor class we have seen previously, to analyze the performance of
algorithms. Additionally, it can statistically compare the performance of two or more algo-
rithms to determine, for a given confidence level, if there is any statistical difference between
the two algorithms. For example, the following code compares three algorithms — NSGA-II,
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GDE3, and ε-MOEA — on the UF1 test problem.

1 package chapter4;
2

3 import java.io.IOException;
4

5 import org.moeaframework.Analyzer;
6 import org.moeaframework.Executor;
7 import org.moeaframework.analysis.plot.Plot;
8

9 public class ComparingAlgorithms {
10

11 public static void main(String[] args) throws IOException {
12 String problem = "UF1";
13 String[] algorithms = { "NSGAII", "GDE3", "eMOEA" };
14

15 //setup the experiment
16 Executor executor = new Executor()
17 .withProblem(problem)
18 .withMaxEvaluations(10000);
19

20 Analyzer analyzer = new Analyzer()
21 .withSameProblemAs(executor)
22 .includeHypervolume()
23 .showStatisticalSignificance();
24

25 //run each algorithm for 50 seeds
26 for (String algorithm : algorithms) {
27 analyzer.addAll(algorithm,
28 executor.withAlgorithm(algorithm).runSeeds(50));
29 }
30

31 //print the results
32 analyzer.printAnalysis();
33

34 //plot the results
35 new Plot()
36 .add(analyzer)
37 .show();
38 }
39

40 }

MOEAFramework/book/chapter4/ComparingAlgorithms.java

On lines 16-18, we setup the Executor for our test problem, UF1. Note that unlike the
previous examples of using the Executor, we do not specify the algorithm. We will do this
later. Next, on lines 20-23, the setup the Analyzer. We again must indicate on line 21
which problem we are solving so it can compute the performance metrics correctly. On line
22 we specify that we are interested in the hypervolume performance metric and on line 23
request that we compute the statistical significance of the results (with 95% confidence level
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by default). The for loop in lines 26-29 actually performs the analysis. Looping over each
algorithm in our study, we setup the Executor to run the given algorithm for 50 seeds on
line 28. The results of the 50 seeds is added to the analyzer on line 27. Finally, we print the
output on line 32. Alternatively, we can plot the differences visually on lines 35-37.

The text output of this code displays the minimum, median, and maximum hypervolume
value achieved by each algorithm and the statistical significance.

GDE3:
Hypervolume:

Min: 0.46862049421426344
Median: 0.5035596089917667
Max: 0.534267455034584
Count: 50
Indifferent: []

eMOEA:
Hypervolume:

Min: 0.3784906829802386
Median: 0.4503635874660789
Max: 0.5322735014135916
Count: 50
Indifferent: [NSGAII]

NSGAII:
Hypervolume:

Min: 0.33173049116232906
Median: 0.45913525261150123
Max: 0.5370813537070005
Count: 50
Indifferent: [eMOEA]

When checking for the statistical significance as we have done, the output will contain the
Indifferent field listing, if any, the algorithms with statistically indifferent performance.
That is to say, with 95% confidence, the performance of NSGA-II and eMOEA are identical,
or not statistically different.

The graphical output of this code produces the box-and-whisker plot shown below. The
results of each algorithm is represented by a colored box. The filled, rectangular box shows
the range encompassed by the 25% to 75% percentile (i.e., the middle 50% of the data) and
the horizontal line shows the median. The colored whiskers (the thin lines at the top and
bottom of the rectangular box) show the regular min and max of the data. The solid black
circle shows the mean. Using this plot, we can see quickly that ε-MOEA performs worse
than GDE3 and NSGA-II (larger values are preferred).
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In addition to the hypervolume performance metric show above, the MOEA Framework
also supports generational distance, inverted generational distance, additive ε-indicator, max-
imum Pareto front error, spacing, contribution, and the R2 indicator (Knowles and Corne,
2002; Coello Coello et al., 2007; Hansen et al., 1998). The R1 and R3 indicators are also
available, but are not often used in practice as the R2 indicator exhibits better properties.

Table 4.2 shows the supported indicators and key properties. Pareto compliant implies
that better indicator values correspond to approximation sets that are preferred by weak
Pareto dominance. This is a good property for performance metrics as better values (closer
to the target) indicate better Pareto approximate sets.

Each indicator is enabled by calling the corresponding include method, such as
includeHypervolume() for the hypervolume metric. In this example, we analyzed the
UF1 test problem which has a known reference set. The reference set contains all Pareto
optimal solutions for a given problem (or a good approximation of the set). The MOEA
Framework automatically loads the reference sets for built-in problems. For custom prob-
lems, there are two options. First, if you do not explicitly load a reference set, then the
Analyzer automatically combines all results to produce a reference set. In this case, the
reference set contains all Pareto optimal solutions generated by the runs. Alternatively, you
can call analyzer.withReferenceSet(new File("set.txt")) to load the refer-
ence set from a file. This file simply contains the objective values for each Pareto optimal
solution. For example, if the Pareto set was a straight line from (0, 1) to (1, 0), then the
reference set file would be:

0.0 1.0
0.1 0.9
0.2 0.8
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0.3 0.7
0.4 0.6
0.5 0.5
0.6 0.4
0.7 0.3
0.8 0.2
0.9 0.1
1.0 0.0

The ordering of solutions in the reference set file does not matter.

4.4 Runtime Dynamics

In the previous section, we saw how to statistically compare the performance of two or
more algorithms. In doing so, we are only comparing the end-of-run performance of the
algorithm using only the final Pareto approximation. It can also be useful to investigate the
intermediate performance of an algorithm. That is, we want to see how the performance of
the algorithm evolves over time. Additionally, we can also inspect other properties of the
algorithm to see how, internally, they adapt over time.

To collect runtime dynamics, we introduce the Instrumenter class. The
Instrumenter gets its name from its ability to add instrumentation, which are pieces
of code that record information, to an algorithm. A variety of data can be collected using
the Instrumenter, including:

1. Elapsed time

2. Population size / archive size

3. The approximation set

4. Performance metrics

5. Restart frequency

The Instrumenter works hand-in-hand with the Executor to collect its data. The
Executor is responsible for configuring and running the algorithm, but it allows the
Instrumenter to record the necessary data while the algorithm is running. To start
collecting run-time dynamics, we first create and configure an Instrumenter instance.

1 Instrumenter instrumenter = new Instrumenter()
2 .withProblem("UF1")
3 .withFrequency(100)
4 .attachElapsedTimeCollector()
5 .attachGenerationalDistanceCollector();
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First, line 1 creates the new Instumenter instance. Next, line 2 specifies the problem.
This allows the instrumenter to access the known reference set for this problem, which is
necessary for evaluating performance metrics. Third, line 3 sets the frequency at which the
data is recorded. In this example, data is recorded every 100 evaluations. Lastly, lines 4 and
5 indicate that only the elapsed time and generational distance should be recorded. Calling
.attachAll() will collect all available data.

Next, we create and configure the Executor instance with the following code snippet:

1 new Executor()
2 .withSameProblemAs(instrumenter)
3 .withAlgorithm("NSGAII")
4 .withMaxEvaluations(10000)
5 .withInstrumenter(instrumenter)
6 .run();

This code snippet is similar to the previous examples of the Executor, but includes the
addition of line 5. Line 5 tells the executor that all algorithms it executes will be instrumented
with our Instrumenter instance. Once the instrumenter is set and the algorithm is configured,
we can run the algorithm on line 6.

When the run completes, we can access the data collected by the instrumenter. The data
is stored in an Accumulator object. The Accumulator for the run we just executed can
be retrieved with the following line:

1 Accumulator accumulator = instrumenter.getLastAccumulator();

An Accumulator is similar to a Map in that it stores key-value pairs. The key identifies
the type of data recorded. However, instead of storing a single value, the Accumulator
stores many values, one for each datapoint collected by the Instrumenter. Recall that in
this example, we are recording a datapoint every 100 evaluations (i.e., the frequency). We
could choose to either print the contents to the console:

1 System.out.println(accumulator.toCSV());

or save the contents to a CSV file:

1 accumulator.saveCSV(new File("output.csv"));

or plot the data in a line graph:

1 new Plot()
2 .add(accumulator)
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3 .show();

The full code example for collecting the runtime dynamics and plotting the results is
shown below:

1 package chapter4;
2

3 import java.io.IOException;
4

5 import org.moeaframework.Executor;
6 import org.moeaframework.Instrumenter;
7 import org.moeaframework.analysis.collector.Accumulator;
8 import org.moeaframework.analysis.plot.Plot;
9

10 public class RuntimeDynamics {
11

12 public static void main(String[] args) throws IOException {
13 Instrumenter instrumenter = new Instrumenter()
14 .withProblem("UF1")
15 .withFrequency(100)
16 .attachElapsedTimeCollector()
17 .attachGenerationalDistanceCollector();
18

19 new Executor()
20 .withSameProblemAs(instrumenter)
21 .withAlgorithm("NSGAII")
22 .withMaxEvaluations(10000)
23 .withInstrumenter(instrumenter)
24 .run();
25

26 Accumulator accumulator = instrumenter.getLastAccumulator();
27

28 new Plot()
29 .add(accumulator)
30 .show();
31 }
32

33 }

MOEAFramework/book/chapter4/RuntimeDynamics.java

This code produces the following plot:

54



Rather than plotting all the data in an accumulator, you can also plot specific metrics.
As shown below, we only plot the generational distance:

1 new Plot()
2 .add("GD", accumulator, "GenerationalDistance")
3 .show();
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Chapter 5

Customizing Algorithms

In previous chapters, we used the Executor class to optimize problems. The Executor
is great for quickly solving problems using predefined optimization algorithms. However, it
is not very customizable. This chapter discusses step for customizing algorithms.

5.1 Manually Running Algorithms

Before we discuss how to customize an algorithm, lets start by looking at what happens
behind the scenes in the Executor class. Take the following code, for example.

1 NondominatedPopulation result = new Executor()
2 .withAlgorithm("NSGAII")
3 .withProblemClass(SchafferProblem.class)
4 .withMaxEvaluations(10000)
5 .run();

This code creates a new instance of the NSGA-II algorithm and uses it to optimize the
Schaffer problem. During optimization, it spends at most 10,000 evaluations. Finally, the
Pareto approximate result is saved to the result variable. Underneath the hood, these
same steps can be accomplished as shown below:

1 package chapter5;
2

3 import org.moeaframework.algorithm.NSGAII;
4 import org.moeaframework.core.Algorithm;
5 import org.moeaframework.core.Initialization;
6 import org.moeaframework.core.NondominatedPopulation;
7 import org.moeaframework.core.NondominatedSortingPopulation;
8 import org.moeaframework.core.Problem;
9 import org.moeaframework.core.Variation;

10 import org.moeaframework.core.comparator.ChainedComparator;
11 import org.moeaframework.core.comparator.CrowdingComparator;
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12 import org.moeaframework.core.comparator.ParetoDominanceComparator;
13 import org.moeaframework.core.operator.GAVariation;
14 import org.moeaframework.core.operator.RandomInitialization;
15 import org.moeaframework.core.operator.TournamentSelection;
16 import org.moeaframework.core.operator.real.PM;
17 import org.moeaframework.core.operator.real.SBX;
18 import chapter2.SchafferProblem;
19

20 public class ManualRun {
21

22 public static void main(String[] args) {
23 // define the problem
24 Problem problem = new SchafferProblem();
25

26 // create an initial random population of 100 individuals
27 Initialization initialization = new RandomInitialization(
28 problem,
29 100);
30

31 // define the selection operator
32 TournamentSelection selection = new TournamentSelection(2,
33 new ChainedComparator(
34 new ParetoDominanceComparator(),
35 new CrowdingComparator()));
36

37 // define the crossover / mutation operator
38 Variation variation = new GAVariation(
39 new SBX(1.0, 25.0),
40 new PM(1.0 / problem.getNumberOfVariables(), 30.0));
41

42 // construct the algorithm
43 Algorithm algorithm = new NSGAII(
44 problem,
45 new NondominatedSortingPopulation(),
46 null, // no archive
47 selection,
48 variation,
49 initialization);
50

51 // run the algorithm for 10,000 evaluations
52 while (algorithm.getNumberOfEvaluations() < 10000) {
53 algorithm.step();
54 }
55

56 // get the Pareto approximate results
57 NondominatedPopulation result = algorithm.getResult();
58 }
59

60 }

MOEAFramework/book/chapter5/ManualRun.java
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As can be seen, we must define each component of the algorithm manually, as listed below:

Line 24 Problem definition

Lines 27-29 Initialization operator - Produces a randomly-generated initial population with
100 individuals

Lines 32-35 Selection operator - Binary tournament selecting using Pareto dominance and
crowding distance

Lines 38-40 Variation operator - Simulated binary crossover with polynomial mutation

Lines 43-49 Algorithm definition - NSGA-II with the given operators

Lines 52-54 Runs the algorithm for 10,000 evaluations

Line 57 Retrieve the Pareto approximate results

Customizing an algorithm requires changing the components above as desired. In the re-
mainder of this chapter we’ll consider several customizations.

5.2 Custom Initialization

Lets say instead of the randomly-generated initial population, we would rather use the Latin
hypercube distribution. We would begin by implementing the Initialization interface
and generating the initial population using a Latin hypercube distribution:

1 package chapter5;
2

3 import org.moeaframework.core.Initialization;
4 import org.moeaframework.core.Problem;
5 import org.moeaframework.core.Solution;
6 import org.moeaframework.core.variable.RealVariable;
7 import org.moeaframework.util.sequence.LatinHypercube;
8

9 public class LatinHypercubeInitialization implements Initialization {
10

11 private Problem problem;
12

13 private int size;
14

15 public LatinHypercubeInitialization(Problem problem, int size) {
16 super();
17 this.problem = problem;
18 this.size = size;
19 }
20

21 @Override
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22 public Solution[] initialize() {
23 LatinHypercube lhs = new LatinHypercube();
24 double[][] samples = lhs.generate(size, problem.getNumberOfObjectives());
25 Solution[] result = new Solution[size];
26

27 for (int i = 0; i < size; i++) {
28 Solution solution = problem.newSolution();
29

30 for (int j = 0; j < problem.getNumberOfVariables(); j++) {
31 RealVariable variable = (RealVariable)solution.getVariable(j);
32 variable.setValue(samples[i][j] * (variable.getUpperBound()-variable.

getLowerBound())
33 + variable.getLowerBound());
34 }
35

36 result[i] = solution;
37 }
38

39 return result;
40 }
41

42 }

MOEAFramework/book/chapter5/LatinHypercubeInitialization.java

When implementing the Initialization interface, we must include the Solution
[] initialize() method to return the initial population. Fortunately, we already have
code that produces the Latin hypercube samples (LHS), but they are scaled on the range
[0, 1]. Thus, we first generate the LHS samples on the range [0, 1] on lines 23-24. Next, we
loop over each of these samples on line 27. For each sample, we create a new Solution
instance (line 28). On lines 30-34, we assign the value of each decision variable, being sure
to scale from the range [0, 1] to the lower and upper bounds of the decision variable. Each
solution is added to the result array and returned on line 39.

We then replace the RandomInitialization class with our new
LatinHypercubeInitialization on line 27-29 below:

1 package chapter5;
2

3 import org.moeaframework.algorithm.NSGAII;
4 import org.moeaframework.core.Algorithm;
5 import org.moeaframework.core.Initialization;
6 import org.moeaframework.core.NondominatedPopulation;
7 import org.moeaframework.core.NondominatedSortingPopulation;
8 import org.moeaframework.core.Problem;
9 import org.moeaframework.core.Variation;

10 import org.moeaframework.core.comparator.ChainedComparator;
11 import org.moeaframework.core.comparator.CrowdingComparator;
12 import org.moeaframework.core.comparator.ParetoDominanceComparator;
13 import org.moeaframework.core.operator.GAVariation;
14 import org.moeaframework.core.operator.TournamentSelection;
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15 import org.moeaframework.core.operator.real.PM;
16 import org.moeaframework.core.operator.real.SBX;
17

18 import chapter2.SchafferProblem;
19

20 public class CustomInitialization {
21

22 public static void main(String[] args) {
23 // define the problem
24 Problem problem = new SchafferProblem();
25

26 // create an LHS initial population with 100 individuals
27 Initialization initialization = new LatinHypercubeInitialization(
28 problem,
29 100);
30

31 // define the selection operator
32 TournamentSelection selection = new TournamentSelection(2,
33 new ChainedComparator(
34 new ParetoDominanceComparator(),
35 new CrowdingComparator()));
36

37 // define the crossover / mutation operator
38 Variation variation = new GAVariation(
39 new SBX(1.0, 25.0),
40 new PM(1.0 / problem.getNumberOfVariables(), 30.0));
41

42 // construct the algorithm
43 Algorithm algorithm = new NSGAII(
44 problem,
45 new NondominatedSortingPopulation(),
46 null, // no archive
47 selection,
48 variation,
49 initialization);
50

51 // run the algorithm for 10,000 evaluations
52 while (algorithm.getNumberOfEvaluations() < 10000) {
53 algorithm.step();
54 }
55

56 // get the Pareto approximate results
57 NondominatedPopulation result = algorithm.getResult();
58 }
59

60 }

MOEAFramework/book/chapter5/CustomInitialization.java
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5.3 Custom Algorithms

It is very convenient to develop new optimization algorithms within the MOEA Framework.
Not only can you build the algorithm using the existing components already built into the
MOEA Framework, but your algorithm will work with all of the analytical and plotting tools
available.

All optimization algorithms implemented within the MOEA Framework must implement
the Algorithm interface. This interfaces defines several methods that must be imple-
mented. For convenience, several abstract classes are also provided, including:

Algorithm - Used when implementing an algorithm that can not use any of the abstract
classes discussed below. Provides the greatest flexibility, but requires the most devel-
opment.

AbstractAlgorithm - Used when creating iterative optimization algorithms. The devel-
oper must provide the initialize() and iterate() method.

AbstractEvolutionaryAlgorithm - Used when creating evolutionary algorithms that
typically optimize a population of candidate solutions.

AbstractPSOAlgorithm - Used when implementing particle swarm optimization algo-
rithms. Provides structures for storing and updating particle positions, velocities, etc.

To demonstrate the creation of a new algorithm, we will construct a very simple opti-
mization algorithm called the RandomWalker. The overall algorithm is as follows:

1. Initialize the population with random solutions

2. While NFE < MaxNFE

(a) Randomly pick a solution from the population

(b) Mutate the individual with polynomial mutation

(c) Add the offspring to the population

(d) Use non-dominated sorting to remove the worst member of the population

From the above description, we see that the algorithm uses a population of solutions.
Therefore, we will extend the AbstractEvolutionaryAlgorithm, as shown below.

1 package chapter5;
2

3 import org.moeaframework.algorithm.AbstractEvolutionaryAlgorithm;
4 import org.moeaframework.core.Initialization;
5 import org.moeaframework.core.NondominatedSortingPopulation;
6 import org.moeaframework.core.PRNG;
7 import org.moeaframework.core.Problem;
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8 import org.moeaframework.core.Solution;
9 import org.moeaframework.core.Variation;

10

11 public class RandomWalker extends AbstractEvolutionaryAlgorithm {
12

13 private final Variation variation;
14

15 public RandomWalker(Problem problem, Initialization initialization,
16 Variation variation) {
17 super(problem, new NondominatedSortingPopulation(), null, initialization);
18 this.variation = variation;
19 }
20

21 @Override
22 protected void iterate() {
23 // get the current population
24 NondominatedSortingPopulation population = (NondominatedSortingPopulation)

getPopulation();
25

26 // randomly select a solution from the population
27 int index = PRNG.nextInt(population.size());
28 Solution parent = population.get(index);
29

30 // mutate the selected solution
31 Solution offspring = variation.evolve(new Solution[] { parent })[0];
32

33 // evaluate the objectives/constraints
34 evaluate(offspring);
35

36 // add the offspring to the population
37 population.add(offspring);
38

39 // use non-dominated sorting to remove the worst solution
40 population.truncate(population.size()-1);
41 }
42

43 }

MOEAFramework/book/chapter5/RandomWalker.java

Observe that our constructor on line 15 accepts three arguments: the problem definition,
the initialization procedure, and the variation operator. We pass the problem and initializa-
tion procedure to the super class (AbstractEvolutionaryAlgorithm). Also note that
we pass a new NondominatedSortingPopulation to the super class, which is used to
store the population. AbstractEvolutionaryAlgorithm will handle all of the messy
details of initializing and maintaining the population.

Since we extended the AbstractEvolutionaryAlgorithm class, we only need to
implement the iterate() method. The iterate() method, starting on line 22, describes
one iteration of the algorithm. Depending on the type of algorithm, the iterate() method
could perform a little or a lot of work. For example, in our RandomWalker example, each
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iteration will generate one offspring. In a generational algorithm like NSGA-II, all members
of the population are evolved every iteration. It is up to the designer of the algorithm to
determine how much work is performed in the iterate() method. At the very least,
however, at least one offspring should be generated each iteration.

We can test our RandomWalker class as follows:

1 package chapter5;
2

3 import org.moeaframework.Executor;
4 import org.moeaframework.core.NondominatedPopulation;
5 import org.moeaframework.core.spi.AlgorithmFactory;
6 import chapter2.SchafferProblem;
7

8 public class RunHyperheuristic {
9

10 public static void main(String[] args) {
11 AlgorithmFactory.getInstance().addProvider(new HyperheuristicProvider());
12

13 NondominatedPopulation result = new Executor()
14 .withAlgorithm("hyperheuristic")
15 .withProblemClass(SchafferProblem.class)
16 .withMaxEvaluations(10000)
17 .run();
18 }
19

20 }

MOEAFramework/book/chapter5/RunHyperheuristic.java

5.4 Creating Service Providers

The MOEA Framework is designed to be flexible. It uses what’s called a Service Provider
Interface, or SPI, to dynamically load algorithms. This allows new optimization algorithms
to be introduced within the MOEA Framework without modifying the MOEA Framework’s
code. To do this, we will create a new Java class called RandomWalkerProvider and
extend the AlgorithmProvider interface. The contents of this file are shown below.

1 package chapter5;
2

3 import java.util.Properties;
4

5 import org.moeaframework.core.Algorithm;
6 import org.moeaframework.core.Initialization;
7 import org.moeaframework.core.Problem;
8 import org.moeaframework.core.Variation;
9 import org.moeaframework.core.operator.RandomInitialization;

10 import org.moeaframework.core.spi.AlgorithmProvider;
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11 import org.moeaframework.core.spi.OperatorFactory;
12 import org.moeaframework.util.TypedProperties;
13

14 public class RandomWalkerProvider extends AlgorithmProvider {
15

16 @Override
17 public Algorithm getAlgorithm(String name, Properties properties, Problem

problem) {
18 if (name.equalsIgnoreCase("RandomWalker")) {
19 // if the user requested the RandomWalker algorithm
20 TypedProperties typedProperties = new TypedProperties(properties);
21

22 // allow the user to customize the population size (default to 100)
23 int populationSize = typedProperties.getInt("populationSize", 100);
24

25 // initialize the algorithm with randomly-generated solutions
26 Initialization initialization = new RandomInitialization(problem,

populationSize);
27

28 // use the operator factory to create a polynomial mutation operator
29 Variation variation = OperatorFactory.getInstance().getVariation("pm",

properties, problem);
30

31 // construct and return the RandomWalker algorithm
32 return new RandomWalker(problem, initialization, variation);
33 } else {
34 // return null if the user requested a different algorithm
35 return null;
36 }
37 }
38

39 }

MOEAFramework/book/chapter5/RandomWalkerProvider.java

If the user requests an optimization algorithm with the name "RandomWalker", the
above class will create and return an instance of our RandomWalker class. Note that a
properties object is passed to the getAlgorithm method. This properties object contains
any custom properties set by the user, which allows the user to provide special parameters
for the algorithm such as the population size.

Before we can use our new algorithm, we must register it with the MOEA Framework.
The code below shows how to register and use our new optimization algorithm:

1 package chapter5;
2

3 import org.moeaframework.Executor;
4 import org.moeaframework.core.NondominatedPopulation;
5 import org.moeaframework.core.spi.AlgorithmFactory;
6

7 import chapter2.SchafferProblem;
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8

9 public class RunWithProvider {
10

11 public static void main(String[] args) {
12 AlgorithmFactory.getInstance().addProvider(new RandomWalkerProvider());
13

14 NondominatedPopulation result = new Executor()
15 .withAlgorithm("RandomWalker")
16 .withProblemClass(SchafferProblem.class)
17 .withMaxEvaluations(10000)
18 .run();
19 }
20

21 }

MOEAFramework/book/chapter5/RunWithProvider.java

Great! Now we can test our new algorithm with the Analyzer class or inspect its
runtime dynamics with the Instrumenter class. For example, below plots the convergence
of the algorithm using generational distance:

1 package chapter5;
2

3 import org.moeaframework.Executor;
4 import org.moeaframework.Instrumenter;
5 import org.moeaframework.analysis.collector.Accumulator;
6 import org.moeaframework.analysis.plot.Plot;
7 import org.moeaframework.core.spi.AlgorithmFactory;
8

9 public class PlotDynamicsWithProvider {
10

11 public static void main(String[] args) {
12 AlgorithmFactory.getInstance().addProvider(new RandomWalkerProvider());
13

14 Instrumenter instrumenter = new Instrumenter()
15 .withProblem("UF1")
16 .withFrequency(100)
17 .addAllowedPackage("chapter5")
18 .attachGenerationalDistanceCollector();
19

20 new Executor()
21 .withSameProblemAs(instrumenter)
22 .withAlgorithm("RandomWalker")
23 .withMaxEvaluations(10000)
24 .withInstrumenter(instrumenter)
25 .run();
26

27 Accumulator accumulator = instrumenter.getLastAccumulator();
28

29 new Plot().add(accumulator).show();
30 }
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31

32 }

MOEAFramework/book/chapter5/PlotDynamicsWithProvider.java

Note we must call addAllowedPackage("chapter5") on line 17 to allow the in-
strumenter to work with code in our custom package.

5.5 Hyperheuristics

A hyperheuristic combines two or more other heuristics1. The general idea is that a given
heuristic works well one some problems but performs poorly on others. By utilizing more
than one heuristic, we avoid being stuck using a poorly performing heuristic. There are many
examples of this in the literature, including work on AMALGAM (Vrugt and Robinson, 2007;
Vrugt et al., 2009) and Borg (Hadka and Reed, 2013). These hyperheuristics employ some
learning mechanism to determine which heuristics perform better on a given problem. In
this book, for simplicity, we won’t use any learning mechanism and instead simply run both
heuristics an equal number of times. In this example, we will combine NSGA-II and GDE3.
This exercise is intended to demonstrate how using modular designs is beneficial. We will
combine these two algorithms with a minimal amount of code:

1 package chapter5;
2

3 import org.moeaframework.algorithm.AbstractEvolutionaryAlgorithm;
4 import org.moeaframework.algorithm.GDE3;
5 import org.moeaframework.algorithm.NSGAII;
6 import org.moeaframework.core.Initialization;
7 import org.moeaframework.core.NondominatedSortingPopulation;
8 import org.moeaframework.core.Problem;
9 import org.moeaframework.core.Variation;

10 import org.moeaframework.core.comparator.ChainedComparator;
11 import org.moeaframework.core.comparator.CrowdingComparator;
12 import org.moeaframework.core.comparator.ParetoDominanceComparator;
13 import org.moeaframework.core.operator.GAVariation;
14 import org.moeaframework.core.operator.TournamentSelection;
15 import org.moeaframework.core.operator.real.DifferentialEvolution;
16 import org.moeaframework.core.operator.real.DifferentialEvolutionSelection;
17 import org.moeaframework.core.operator.real.PM;
18 import org.moeaframework.core.operator.real.SBX;
19

20 public class Hyperheuristic extends AbstractEvolutionaryAlgorithm {
21

22 private NSGAII nsgaii;
23

24 private GDE3 gde3;
25

1Heuristic is another name for an MOEA
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26 private int iteration;
27

28 public Hyperheuristic(Problem problem, NondominatedSortingPopulation
population,

29 Initialization initialization) {
30 super(problem, population, null, initialization);
31

32 // define our NSGAII instance
33 TournamentSelection selection = new TournamentSelection(2,
34 new ChainedComparator(
35 new ParetoDominanceComparator(),
36 new CrowdingComparator()));
37

38 Variation variation = new GAVariation(
39 new SBX(1.0, 25.0),
40 new PM(1.0 / problem.getNumberOfVariables(), 30.0));
41

42 nsgaii = new NSGAII(
43 problem,
44 population,
45 null, // no archive
46 selection,
47 variation,
48 initialization);
49

50 // define our GDE3 instance
51 gde3 = new GDE3(problem,
52 population,
53 new ParetoDominanceComparator(),
54 new DifferentialEvolutionSelection(),
55 new DifferentialEvolution(0.1, 0.9),
56 initialization);
57 }
58

59 @Override
60 protected void iterate() {
61 if (iteration % 2 == 0) {
62 nsgaii.iterate();
63 } else {
64 gde3.iterate();
65 }
66

67 numberOfEvaluations = nsgaii.getNumberOfEvaluations() +
68 gde3.getNumberOfEvaluations();
69

70 iteration++;
71 }
72

73 }

MOEAFramework/book/chapter5/Hyperheuristic.java
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Here, we manually create the NSGA-II and GDE3 instance on lines 33-48 and 51-56,
respectively. The primary difference is that we share the same population instance be-
tween both algorithm. This way, the algorithms are evolving the same population. In the
iterate method on lines 60-71, we iterate between running NSGA-II and GDE3. Note
in particular how we must update the numberOfEvaluations variable during each iter-
ation. This is necessary since each algorithm may produce a different number of offspring
and we must ensure the number of evaluations is tabulated correctly.

Lets create a custom provider:

1 package chapter5;
2

3 import java.util.Properties;
4

5 import org.moeaframework.core.Algorithm;
6 import org.moeaframework.core.Initialization;
7 import org.moeaframework.core.NondominatedSortingPopulation;
8 import org.moeaframework.core.Problem;
9 import org.moeaframework.core.operator.RandomInitialization;

10 import org.moeaframework.core.spi.AlgorithmProvider;
11 import org.moeaframework.util.TypedProperties;
12

13 public class HyperheuristicProvider extends AlgorithmProvider {
14

15 @Override
16 public Algorithm getAlgorithm(String name, Properties properties, Problem

problem) {
17 if (name.equalsIgnoreCase("hyperheuristic")) {
18 TypedProperties typedProperties = new TypedProperties(properties);
19

20 int populationSize = typedProperties.getInt("populationSize", 100);
21

22 Initialization initialization = new RandomInitialization(
23 problem,
24 populationSize);
25

26 Algorithm algorithm = new Hyperheuristic(
27 problem,
28 new NondominatedSortingPopulation(),
29 initialization);
30

31 return algorithm;
32 } else {
33 return null;
34 }
35 }
36

37 }

MOEAFramework/book/chapter5/HyperheuristicProvider.java
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and test our new algorithm:

1 package chapter5;
2

3 import org.moeaframework.Executor;
4 import org.moeaframework.core.NondominatedPopulation;
5 import org.moeaframework.core.spi.AlgorithmFactory;
6 import chapter2.SchafferProblem;
7

8 public class RunHyperheuristic {
9

10 public static void main(String[] args) {
11 AlgorithmFactory.getInstance().addProvider(new HyperheuristicProvider());
12

13 NondominatedPopulation result = new Executor()
14 .withAlgorithm("hyperheuristic")
15 .withProblemClass(SchafferProblem.class)
16 .withMaxEvaluations(10000)
17 .run();
18 }
19

20 }

MOEAFramework/book/chapter5/RunHyperheuristic.java

5.6 Custom Types and Operators

The MOEA Framework provides several representations for decision variables, including
real-values, integers, binary strings, permutations, and programs (expression trees). It is a
good practice to reuse these built-in operators when able. However, some situations require
defining new types and operators, including:

1. Data can not be represented by a composite of built-in types

2. Provide better structure (grouping) of variables

3. Define custom variation operators

Suppose we needed to represent colors. A color is commonly represented on a computer
as a composite of three primary colors: red, green, and blue. The value for each primary
color typically ranges between 0 and 255, where 0 indicates absence of the primary color and
255 indicates complete saturation. We typically express a color as a tuple of three values,
e.g. (red, green, blue). Some common colors are shown below:

• Black - (0, 0, 0)

• Red - (255, 0, 0)
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• Green - (0, 255, 0)

• Blue - (0, 0, 255)

• Yellow - (255, 255, 0)

• White - (255, 255, 255)

We could choose to represent colors as three separate real or integer values. However,
we can provide better structure and enable the use of custom operators by defining a new
type. First, we create the Color type by implementing the Variable interface. A variable
requires two methods: copy() and randomize(). The copy() method is responsible
for creating an exact copy of a color (which is used to create new offspring solutions) and
randomize() creates a new random color (which is used to create the initial population).
Our Color class is shown below:

1 package chapter5;
2

3 import org.moeaframework.core.PRNG;
4 import org.moeaframework.core.Variable;
5

6 public class Color implements Variable {
7

8 private static final long serialVersionUID = 8461741347578471248L;
9

10 private int r;
11

12 private int g;
13

14 private int b;
15

16 public Color() {
17 super();
18 }
19

20 public Color(int r, int g, int b) {
21 this();
22 this.r = r;
23 this.g = g;
24 this.b = b;
25 }
26

27 protected int getR() {
28 return r;
29 }
30

31 protected void setR(int r) {
32 this.r = r;
33 }
34
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35 protected int getG() {
36 return g;
37 }
38

39 protected void setG(int g) {
40 this.g = g;
41 }
42

43 protected int getB() {
44 return b;
45 }
46

47 protected void setB(int b) {
48 this.b = b;
49 }
50

51 @Override
52 public Variable copy() {
53 return new Color(r, g, b);
54 }
55

56 @Override
57 public void randomize() {
58 r = PRNG.nextInt(256);
59 g = PRNG.nextInt(256);
60 b = PRNG.nextInt(256);
61 }
62

63 @Override
64 public String toString() {
65 return "Color [r=" + r + ", g=" + g + ", b=" + b + "]";
66 }
67

68 }

MOEAFramework/book/chapter5/Color.java

Second, we need to define any variation operators for this type. The variation operators
describe how to generate new candidate offspring during search. For simplicity, we will define
a mutation operator that accepts a single parent, copies the parent, randomly perturbs the
color in the copy, and returns the result. Be sure to always create copies of parents to avoid
modifying the original parent solution.

1 package chapter5;
2

3 import org.moeaframework.core.PRNG;
4 import org.moeaframework.core.Solution;
5 import org.moeaframework.core.Variation;
6

7 public class ColorMutation implements Variation {
8
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9 @Override
10 public int getArity() {
11 return 1;
12 }
13

14 @Override
15 public Solution[] evolve(Solution[] parents) {
16 Solution result = parents[0].copy();
17

18 for (int i = 0; i < result.getNumberOfVariables(); i++) {
19 if (result.getVariable(i) instanceof Color) {
20 Color color = (Color)result.getVariable(i);
21 color.setR(Math.min(255, Math.max(0, color.getR() + PRNG.nextInt(-5,

5))));
22 color.setG(Math.min(255, Math.max(0, color.getG() + PRNG.nextInt(-5,

5))));
23 color.setB(Math.min(255, Math.max(0, color.getB() + PRNG.nextInt(-5,

5))));
24 }
25 }
26

27 return new Solution[] { result };
28 }
29

30 };

MOEAFramework/book/chapter5/ColorMutation.java

Finally, we create an operator provider for this new type. The operator provider is
responsible for specifying which variation operators are appropriate for a given problem. In
this example, we check to see if the problem type contains any Color variables, and if so,
instruct the MOEA Framework to use our variation operator.

1 package chapter5;
2

3 import java.util.Properties;
4

5 import org.moeaframework.core.Problem;
6 import org.moeaframework.core.Solution;
7 import org.moeaframework.core.Variation;
8 import org.moeaframework.core.spi.OperatorProvider;
9

10 public class ColorProvider extends OperatorProvider {
11

12 @Override
13 public String getMutationHint(Problem problem) {
14 Solution solution = problem.newSolution();
15

16 for (int i = 0; i < problem.getNumberOfVariables(); i++) {
17 if (solution.getVariable(i) instanceof Color) {
18 return "colormutation";
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19 }
20 }
21

22 return null;
23 }
24

25 @Override
26 public String getVariationHint(Problem problem) {
27 return getMutationHint(problem);
28 }
29

30 @Override
31 public Variation getVariation(String name, Properties properties,
32 Problem problem) {
33 if (name.equalsIgnoreCase("colormutation")) {
34 return new ColorMutation();
35 }
36

37 return null;
38 }
39

40 }

MOEAFramework/book/chapter5/ColorProvider.java

At this point, we have defined our new decision variable type and the appropriate op-
erators. We can now define a problem using this type. The problem we will solve is very
simple: find N colors that, when mixed, produce a color closest to the target, assuming the
background or base color is white (255, 255, 255).

1 package chapter5;
2 import org.moeaframework.core.Solution;
3 import org.moeaframework.problem.AbstractProblem;
4

5 public class ColorBlenderProblem extends AbstractProblem {
6

7 private final Color target;
8

9 public ColorBlenderProblem(int N, Color target) {
10 super(N, 1);
11 this.target = target;
12 }
13

14 public Color blend(Color c1, Color c2, double ratio) {
15 double invRatio = 1.0 - ratio;
16 int r = (int)((c1.getR() * invRatio) + (c2.getR() * ratio));
17 int g = (int)((c1.getG() * invRatio) + (c2.getG() * ratio));
18 int b = (int)((c1.getB() * invRatio) + (c2.getB() * ratio));
19

20 return new Color(r, g, b);
21 }
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22

23 @Override
24 public void evaluate(Solution solution) {
25 Color result = new Color(255, 255, 255);
26

27 for (int i = 0; i < numberOfVariables; i++) {
28 result = blend(result, (Color)solution.getVariable(i), 0.5);
29 }
30

31 int diff = Math.abs(result.getR()-target.getR()) +
32 Math.abs(result.getG()-target.getG()) +
33 Math.abs(result.getB()-target.getB());
34

35 solution.setObjective(0, diff);
36 }
37

38 @Override
39 public Solution newSolution() {
40 Solution solution = new Solution(numberOfVariables, numberOfObjectives);
41

42 for (int i = 0; i < numberOfVariables; i++) {
43 solution.setVariable(i, new Color());
44 }
45

46 return solution;
47 }
48

49 }

MOEAFramework/book/chapter5/ColorBlenderProblem.java

Note how the constructor on line 9 accepts two arguments: N, the number of colors to
combine, and target, the target color. This will allow us to run this problem with different
inputs, as shown below.

1 package chapter5;
2 import org.moeaframework.Executor;
3 import org.moeaframework.core.NondominatedPopulation;
4 import org.moeaframework.core.Solution;
5 import org.moeaframework.core.spi.OperatorFactory;
6

7 public class RunColorBlenderProblem {
8

9 public static void main(String[] args) {
10 OperatorFactory.getInstance().addProvider(new ColorProvider());
11

12 NondominatedPopulation result = new Executor()
13 .withProblemClass(ColorBlenderProblem.class, 3, new Color(127, 127,

127))
14 .withAlgorithm("NSGAII")
15 .withMaxEvaluations(10000)
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16 .distributeOnAllCores()
17 .run();
18

19 for (Solution solution : result) {
20 System.out.print(solution.getObjective(0));
21

22 for (int i = 0; i < solution.getNumberOfVariables(); i++) {
23 System.out.print(" ");
24 System.out.print(solution.getVariable(i));
25 }
26 }
27 }
28

29 }

MOEAFramework/book/chapter5/RunColorBlenderProblem.java

As before, we must register our custom operator provider on line 11. Once registered, we
can optimize the problem. Also observe on line 13 how we pass the arguments when calling
withProblemClass. The result is shown below:

0.0 Color [r=148, g=20, b=132] Color [r=158, g=252, b=127] Color [r=76, g=61,
b=94]

The three colors (148, 20, 132), (158, 252, 127) and (76, 61, 94) combine on a white
background to produce the target color (127, 127, 127) exactly. You will likely see different
results if running this example since there are many color combinations that produce the
same result.

5.7 Learning the API

You may be wondering how we know which classes to implement when defining custom
components. We make available online the entire application programming interface (API)
for the MOEA Framework. The API describes in detail every class, function, and argument
in the code. You can find the API online at http://moeaframework.org/javadoc/
index.html.
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Chapter 6

The Diagnostic Tool

We’ll take a brief break from code and turn our attention to the MOEA Framework’s diag-
nostic tool. The diagnostic tool provides a graphical interface to quickly run and analyze
MOEAs on a test problems. We have seen many of the functions provided by the diagnostic
tool in the preceeding chapters, but the diagnostic tool provides an easy-to-use point-and-
click interface for accessing these features.

6.1 Using the Diagnostic Tool

To run the diagnostic tool, navigate to the MOEA Framework folder on your computer
and double-click the launch-diagnostic-tool.bat file. You can manually run the
diagnostic tool with the following command:

java -Djava.ext.dirs=lib
org.moeaframework.analysis.diagnostics.LaunchDiagnosticTool

Figure 6.1 provides a screenshot of the diagnostic tool window. This window is composed
of the following sections:

1. The configuration panel. This panel lets you select the algorithm, problem, number of
repetitions (seeds), and maximum number of function evaluations (NFE).

2. The execution panel. Clicking run will execute the algorithm as configured in the
configuration panel. Two progress bars display the individual run progress and the
total progress for all seeds. Any in-progress runs can be canceled.

3. The displayed results table. This table displays the completed runs. The entries which
are selected/highlighted are displayed in the charts. You can click an individual line
to show the data for just that entry, click while holding the Alt key to select multiple
entries, or click the Select All button to select all entries.
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Figure 6.1: The main window of the diagnostic tool.
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Figure 6.2: Screenshot of the diagnostic tool displaying two side-by-side metrics. You can
select as many metrics to display by holding down the Alt key and clicking a row in the
displayed metrics table.

4. The displayed metrics table. Similar to the displayed results table, the selected metrics
are displayed in the charts. You can select one metric or multiple metrics by holding
the Alt key while clicking.

5. The actual charts. A chart will be generated for each selected metric. Thus, if two
metrics are selected, then two charts will be displayed side-by-side. See Figure 6.2 for
an example.

Some algorithms do not provide certain metrics. When selecting a specific metric, only
those algorithms that provide that metric will be displayed in the chart.

Quantile Plots vs Individual Traces

By default, the charts displayed in the diagnostic tool show the statistical 25%, 50% and
75% quantiles. The 50% quantile is the thick colored line, and the 25% and 75% quan-
tiles are depicted by the colored area. This quantile view allows you to quickly distinguish
the performance between multiple algorithms, particularly when there is significant overlap
between two or more algorithms.
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Figure 6.3: Screenshot of the diagnostic tool displaying the individual traces rather than the
quantile view. The individual traces provide access to the raw data, but the quantile view
is often easier to interpret.

You can alternatively view the raw, individual traces by selecting ’Show Individual Traces’
in the View menu. Each colored line represents one seed. Figure 6.3 provides an example of
plots showing individual traces. You can always switch back to the quantile view using the
View menu.

Viewing Approximation Set Dynamics

Another powerful feature of the diagnostic tool is the visualization of approximation set
dynamics. The approximation set dynamics show how the algorithm’s result (its approxima-
tion set) evolved throughout the run. To view the approximation set dynamics, right-click
on one of the rows in the displayed results table. A menu will appear with the option to
show the approximation set. A window similar to Figure 6.4 will appear.

This window displays the following items:

1. The approximation set plot. This plot can only show two dimensions. If available, the
reference set for the problem will be shown as black points. All other points are the
solutions produced by the algorithm. Different seeds are displayed in different colors.
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Figure 6.4: Screenshot of the approximation set viewer. This allows you to view the approx-
imation set at any point in the algorithm’s execution.
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2. The evolution slider. Dragging the slider to the left or right will show the approximation
set from earlier or later in the evolution.

3. The display controls. These controls let you adjust how the data is displayed. Each of
the radio buttons switches between different scaling options. The most common option
is ’Use Reference Set Bounds’, which scales the plot so that the reference set fills most
of the displayed region.

4. The displayed seeds table. By default, the approximation sets for all seeds are displayed
and are distinguished by color. You can also downselect to display one or a selected
group of seeds by selecting entries in this table. Multiple entries can be selected by
holding the Alt key while clicking.

You can manually zoom to any portion in these plots (both in the approximation set
viewer and the plots in the main diagnostic tool window) by positioning the cursor at the
top-left corner of the zoom region, pressing and holding down the left-mouse button, dragging
the cursor to the bottom-right corner of the zoom region, and releasing the left-mouse button.
You can reset the zoom by pressing and holding the left-mouse button, dragging the cursor
to the top-left portion of the plot, and releasing the left-mouse button.

Statistical Results

The diagnostic tool also allows you to exercise the statistical testing tools provided by the
MOEA Framework with the click of a button. If you have two or more entries selected in the
displayed results table, the ’Show Statistics’ button will become enabled. The show statistics
button also requires each of the selected entries to use the same problem. The button will
remain disabled unless this condition is satisfied. If the button is disabled, please ensure
you have two or more rows selected and all selected entries are using the same problem.
Figure 6.5 shows the example output from clicking this button.

Improving Performance and Memory Efficiency

By default, the diagnostic tool collects and displays all available data. If you know ahead of
time that certain pieces of data are not needed for your experiments, you can often increase
the performance and memory efficiency of the program by disabling unneeded data. You
can enable or disable the collection of data by checking or unchecking the appropriate item
in the Collect menu.

6.2 Adding Custom Algorithms

What makes the diagnostic tool particularly powerful is that it can incorporate custom algo-
rithms and problems. Lets take, for example, the RandomWalker and Hyperheuristic
algorithms we created in the previous chapter. We can incorporate these algorithms into the
diagnostic tool with the code below:
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Figure 6.5: Screenshot of the statistics output by the diagnostic tool.
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1 package chapter6;
2

3 import org.moeaframework.analysis.diagnostics.LaunchDiagnosticTool;
4 import org.moeaframework.core.Settings;
5 import org.moeaframework.core.spi.AlgorithmFactory;
6

7 import chapter5.HyperheuristicProvider;
8 import chapter5.RandomWalkerProvider;
9

10 public class RunDiagnosticTool {
11

12 public static void main(String[] args) throws Exception {
13 AlgorithmFactory.getInstance().addProvider(new RandomWalkerProvider());
14 AlgorithmFactory.getInstance().addProvider(new HyperheuristicProvider());
15

16 Settings.PROPERTIES.setString(
17 Settings.KEY_DIAGNOSTIC_TOOL_ALGORITHMS,
18 "RandomWalker, Hyperheuristic, NSGAII, GDE3");
19

20 Settings.PROPERTIES.setString(
21 Settings.KEY_ALLOWED_PACKAGES,
22 "chapter5");
23

24 LaunchDiagnosticTool.main(args);
25 }
26

27 }

MOEAFramework/book/chapter6/RunDiagnosticTool.java

As before, we must register our custom algorithm provides with the MOEA Framework
on lines 13 and 14. Lines 16-22 set two properties to configure the diagnostic tool. The first
property defines which algorithms appear in the tool. We add our two new algorithms to
this list. The second property allows our custom algorithms to be instrumented. Without
specifying the allowed packages property, the diagnostic tool will be unable to collect any
runtime data for our two custom algorithms. Finally, on line 24, we launch the diagnostic
tool window.

Now we want to run each of the four algorithms on a test problem so we can view their
plots. We will use the UF1 problem, but feel free to test with other problems. Select each
algorithm from the drop-down and click the Run button.

Figure 6.6 shows the resulting plot. Here, we’ve selected inverted generational distance.
As expected, the RandomWalker does not perform very well — after all, it’s just taking
random steps. The other algorithms perform very similarly. Using the mouse button, we can
zoom in, as shown in Figure 6.7. Now we can see a difference between the algorithms. NSGA-
II in green and GDE3 and red show differences (the difference is slight, but it is noticeable).
Our hyperheuristic, which combines NSGA-II and GDE3, matches the performance of the
better individual algorithm, GDE3. Even with our simple hyperheuristic, we can see that
the hyperheuristic was able to perform at least as good as its component heuristics.
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Figure 6.6: Comparison of our two custom algorithms with NSGA-II and GDE3

Figure 6.7: Enhanced view of the comparison.
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6.3 Adding Custom Problems

Similar to how we added custom algorithms by registering a provider with the MOEA Frame-
work, user-defined problems are defined using the ProblemProvider. For example, below
we create a problem provider for the Schaffer problem we created in Chapter 2:

1 package chapter6;
2

3 import java.io.File;
4 import java.io.IOException;
5

6 import org.moeaframework.core.FrameworkException;
7 import org.moeaframework.core.NondominatedPopulation;
8 import org.moeaframework.core.PopulationIO;
9 import org.moeaframework.core.Problem;

10 import org.moeaframework.core.spi.ProblemProvider;
11

12 import chapter2.SchafferProblem;
13

14 public class SchafferProblemProvider extends ProblemProvider {
15

16 @Override
17 public Problem getProblem(String name) {
18 if (name.equalsIgnoreCase("MySchafferProblem")) {
19 return new SchafferProblem();
20 } else {
21 return null;
22 }
23 }
24

25 @Override
26 public NondominatedPopulation getReferenceSet(String name) {
27 if (name.equalsIgnoreCase("MySchafferProblem")) {
28 try {
29 return new NondominatedPopulation(
30 PopulationIO.readObjectives(new File("./pf/Schaffer.pf")));
31 } catch (IOException e) {
32 throw new FrameworkException(e);
33 }
34 } else {
35 return null;
36 }
37 }
38

39 }

MOEAFramework/book/chapter6/SchafferProblemProvider.java

A ProblemProvider must define two methods: getProblem and
getReferenceSet. getProblem returns an instance of the problem if the name
matches. getReferenceSet returns the reference set for the problem. Both methods
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must return null if the name does not match any supported problem.
With the problem provider found, we can register it with the MOEA Framework and

launch the diagnostic tool:

1 package chapter6;
2

3 import org.moeaframework.analysis.diagnostics.LaunchDiagnosticTool;
4 import org.moeaframework.core.Settings;
5 import org.moeaframework.core.spi.AlgorithmFactory;
6 import org.moeaframework.core.spi.ProblemFactory;
7

8 import chapter5.HyperheuristicProvider;
9 import chapter5.RandomWalkerProvider;

10

11 public class CustomProblem {
12

13 public static void main(String[] args) throws Exception {
14 AlgorithmFactory.getInstance().addProvider(new RandomWalkerProvider());
15 AlgorithmFactory.getInstance().addProvider(new HyperheuristicProvider());
16

17 ProblemFactory.getInstance().addProvider(new SchafferProblemProvider());
18

19 Settings.PROPERTIES.setString(
20 Settings.KEY_DIAGNOSTIC_TOOL_ALGORITHMS,
21 "RandomWalker, Hyperheuristic, NSGAII, GDE3");
22

23 Settings.PROPERTIES.setString(
24 Settings.KEY_DIAGNOSTIC_TOOL_PROBLEMS,
25 "MySchafferProblem");
26

27 Settings.PROPERTIES.setString(
28 Settings.KEY_ALLOWED_PACKAGES,
29 "chapter5");
30

31 LaunchDiagnosticTool.main(args);
32 }
33

34 }

MOEAFramework/book/chapter6/CustomProblem.java
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Chapter 7

Subsets, Permutations, and Programs

We have seen thus far real-valued and bit string encoding problems. The MOEA Framework
supports three additional, commonly-used representations: subsets, permutations, and pro-
grams. Subsets are similar to bit string encodings, except they represent situations where
only a fixed number of items can be selected (whereas bit strings allow a variable number
of items). Permutations are often used in problems where ordering is important. Programs
are used when one must construct code, rule systems, or decision trees to solve a task. This
chapter discusses these representations.

7.1 Subsets

Previously we saw with the bit string representation how we can solve the Knapsack problem.
Recall that in the Knapsack problem we are tasked with identifying the items to place in a
Knapsack to maximize value constrained only by the capacity of the Knapsack. By using the
bit string (binary) representation, we allowed the optimization algorithm to select anywhere
from 0 up to N items.

Subsets are good for a similar but slightly different class of problems. Instead of allowing
one to select anywhere from 0 up to N items, what if they must select exactly k items. When
the subset is a fixed size, we use the Subset class. Subsets are similar to selection without
replacement. It will pick k items from a set containing N items without repeating any of the
selected items. (Tip: if you need selection with replacement, where items can be selected
more than once, just use k integer variables).

To demonstrate subsets, we will use a slight twist on the classic subset-sum problem,
which we call the fixed-size subset-sum problem. In the fixed-size subset-sum problem, we
are given N integers, both positive and negative. The goal is to find a subset of the integers
of size k that sums to 0. For example, if we have the numbers −5,−3,−1, 2, 4, 6 and k = 4,
we could pick −5,−3, 2, 6 since −5 +−3 + 2 + 6 = 0.

The full code for the fixed-size subset-sum problem is shown below:

1 package chapter7;
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2

3 import org.moeaframework.core.Solution;
4 import org.moeaframework.core.variable.EncodingUtils;
5 import org.moeaframework.core.variable.Subset;
6 import org.moeaframework.problem.AbstractProblem;
7

8 public class FixedSubsetSumProblem extends AbstractProblem {
9

10 private int k;
11

12 private int[] values;
13

14 public FixedSubsetSumProblem(int k, int[] values) {
15 super(1, 1);
16 this.k = k;
17 this.values = values;
18 }
19

20 @Override
21 public void evaluate(Solution solution) {
22 int[] subset = EncodingUtils.getSubset(solution.getVariable(0));
23 int sum = 0;
24

25 for (int i = 0; i < subset.length; i++) {
26 sum += values[subset[i]];
27 }
28

29 solution.setObjective(0, Math.abs(sum));
30 }
31

32 @Override
33 public Solution newSolution() {
34 Solution solution = new Solution(1, 1);
35 solution.setVariable(0, new Subset(k, values.length));
36 return solution;
37 }
38

39 }

MOEAFramework/book/chapter7/FixedSubsetSumProblem.java

We construct the subset with new Subset(k, values.length) to indicate we want
to form subsets of size k from a set of size values.length. Note that the subset does
not actually store the values. Instead, it stores the indices of the selected items. When
evaluating the solution, we must be careful to convert from the indices in the subset to the
original values using values[subset[i]].

When our problem implemented, we can then solve it:

1 package chapter7;
2

3 import java.util.Arrays;
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4

5 import org.moeaframework.Executor;
6 import org.moeaframework.core.NondominatedPopulation;
7 import org.moeaframework.core.Solution;
8 import org.moeaframework.core.variable.EncodingUtils;
9

10 public class SolveFixedSubsetSumProblem {
11

12 private static int[] values = { -1, 1, 3, 5, 9, -4, -2, -8, 17, 24, 18, -16,
-20 };

13

14 public static void main(String[] args) {
15 NondominatedPopulation result = new Executor()
16 .withAlgorithm("NSGAII")
17 .withProblemClass(FixedSubsetSumProblem.class, 6, values)
18 .withMaxEvaluations(10000)
19 .run();
20

21

22

23 for (Solution solution : result) {
24 int[] subset = EncodingUtils.getSubset(solution.getVariable(0));
25 System.out.println(Arrays.toString(toValues(subset, values)) +
26 " => " + solution.getObjective(0));
27 }
28 }
29

30 public static int[] toValues(int[] subset, int[] values) {
31 int[] result = new int[subset.length];
32

33 for (int i = 0; i < subset.length; i++) {
34 result[i] = values[subset[i]];
35 }
36

37 return result;
38 }
39

40 }

MOEAFramework/book/chapter7/SolveFixedSubsetSumProblem.java

You should see output similar to the following:

[9, 3, -20, -8, 17, -1] => 0.0
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7.2 Permutations

Permutations are commonly seen in problems involving ordering. For example, job schedul-
ing often uses permutations to specify the scheduling priority for jobs. Or, in the famous
travelling salesman problem1, we seek the shortest route that visits all cities. We could use
a permutation to represent the path. We will demonstrate the use of permutations in this
section by constructing a simple solver for traveling salesman problems.

The full code for the travelling salesman problem is provided below.

1 package chapter7;
2

3 import org.moeaframework.core.Solution;
4 import org.moeaframework.core.variable.EncodingUtils;
5 import org.moeaframework.problem.AbstractProblem;
6

7 public class TravellingSalesmanProblem extends AbstractProblem {
8

9 private double[][] cities;
10

11 public TravellingSalesmanProblem(double[][] cities) {
12 super(1, 1);
13 this.cities = cities;
14 }
15

16 @Override
17 public Solution newSolution() {
18 Solution solution = new Solution(1, 1);
19 solution.setVariable(0, EncodingUtils.newPermutation(cities.length));
20 return solution;
21 }
22

23 private double distance(int i, int j) {
24 return Math.sqrt(
25 Math.pow(cities[i][0]-cities[j][0], 2.0) +
26 Math.pow(cities[i][1]-cities[j][1], 2.0));
27 }
28

29 @Override
30 public void evaluate(Solution solution) {
31 int[] path = EncodingUtils.getPermutation(solution.getVariable(0));
32 double totalDistance = 0.0;
33

34 for (int i = 0; i < path.length; i++) {
35 totalDistance += distance(path[i], path[(i+1) % path.length]);
36 }
37

38 solution.setObjective(0, totalDistance);
39 }

1https://en.wikipedia.org/wiki/Travelling_salesman_problem

92

https://en.wikipedia.org/wiki/Travelling_salesman_problem


40

41 }

MOEAFramework/book/chapter7/TravellingSalesmanProblem.java

On lines 11-14 we construct the problem. For flexibility, we’ll make the list of cities an
argument. The cities are stored in a Nx2 array storing the x and y coordinates of N cities.
The newSolution method on lines 17-21 shows how to construct a solution. A permutation
is stored in a single decision variable. Lastly, we define the evaluate method on lines 30-
39. First, we extract the permutation on line 31. Second, on lines 32-36, we sum up the
total distance travelled by the salesman. Finally, on line 38, we set the objective value.

The code for optimizing this problem is shown below.

1 package chapter7;
2

3 import org.moeaframework.Executor;
4 import org.moeaframework.analysis.plot.Plot;
5 import org.moeaframework.core.NondominatedPopulation;
6 import org.moeaframework.core.variable.EncodingUtils;
7

8 public class SolveTravellingSalesmanProblem {
9

10 public static double[][] CITIES = {
11 { 0.0, 0.0 },
12 { 1.0, 1.0 },
13 { 0.75, 0.25 },
14 { 1.0, 0.0 },
15 { 0.95, 0.85 },
16 { 0.2, 0.5 },
17 { 0.7, 0.15 },
18 { 0.6, 0.4 },
19 { 0.15, 0.91 },
20 { 0.24, 0.8 },
21 { 0.05, 0.74 },
22 { 0.35, 0.57 }
23 };
24

25 public static void main(String[] args) {
26 NondominatedPopulation result = new Executor()
27 .withAlgorithm("NSGAII")
28 .withProblemClass(TravellingSalesmanProblem.class, CITIES)
29 .withMaxEvaluations(10000)
30 .run();
31

32 int[] bestPath = EncodingUtils.getPermutation(result.get(0).getVariable(0)
);

33

34 new Plot()
35 .scatter("Cities", getCoordinate(0), getCoordinate(1))
36 .line("Path", getCoordinate(0, bestPath), getCoordinate(1, bestPath))
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37 .show();
38 }
39

40 public static double[] getCoordinate(int index) {
41 double[] result = new double[CITIES.length];
42

43 for (int i = 0; i < CITIES.length; i++) {
44 result[i] = CITIES[i][index];
45 }
46

47 return result;
48 }
49

50 public static double[] getCoordinate(int index, int[] path) {
51 double[] result = new double[path.length+1];
52

53 for (int i = 0; i < path.length; i++) {
54 result[i] = CITIES[path[i]][index];
55 }
56

57 result[path.length] = CITIES[path[0]][index];
58

59 return result;
60 }
61

62 }

MOEAFramework/book/chapter7/SolveTravellingSalesmanProblem.java

We define two helper methods, both called getCoordinate, for extracting the coordinates
of the cities for plotting. The resulting plot looks like:
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7.3 Programs

My problems require developing computer code, rule systems, or decision trees. One exam-
ple would be developing a robot to navigate an environment and avoid hitting obstacles.
Available to the robots is input from various sensors which it uses to control steering and
speed. We won’t be so bold in this book to build such a robot, but we will explore here two
problems. The first is a symbolic regression problem, where we attempt to find an expression
to fit a set of points. The second is the ant problem, where we program a robotic ant to find
food in a virtual world.

7.3.1 Type-based Rule System

To accomplish these tasks, the MOEA Framework contains a simple but extensible LISP-like
programming language. The first step towards evolving programs is to define the rules (i.e.,
the syntax and semantics). When defining the rules, two important properties should be
kept in mind: closure and sufficiency.

The closure property requires all program element to be able to accept as arguments any
value and data type that could possibly be returned by any other function or terminal. All
programs generated or evolved by the MOEA Framework are strongly typed. No program
produced by the MOEA Framework will pass an argument to a function that is an incorrect
type. Furthermore, all functions guard against invalid inputs. For example, the log of a
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negative number is undefined. Rather then causing an error, the log method will guard
itself and return 0.0. This allows the rest of the calculation to continue unabated. With
these two behaviors built into the MOEA Framework, the closure property is guaranteed.

The sufficiency property states that the rule set must contain all the necessary functions
and terminals necessary to produce a solution to the problem. Ensuring this property holds
is more challenging as it will depend on the problem domain. For instance, the operators
And, Or and Not are sufficient to produce all boolean expressions. It may not be so ob-
vious in other problem domains which program elements are required to ensure sufficiency.
Additionally, it is often helpful to restrict the rule set to those program elements that are
sufficient, thus reducing the search space for the evolutionary algorithm.

The MOEA Framework comes packaged with over 45 pre-defined program elements for
defining constants, variables, arithmetic operators, control structures, functions, etc. These
program elements are listed below.

Operator Description
Abs Calculates the absolute value of a number
Acos Calculates the arc cosine of a number
Acosh Calculates the hyperbolic arc cosine of a number
Add Adds two numbers
And Calculates the logical AND of two boolean values
Asin Calculates the arc sine of a number
Asinh Calculates the hyperbolic arc sine of a number
Atan Calculates the arc tangent of a number
Atanh Calculates the hyperbolic arc tangent of a number
Call Calls a named function
Ceil Calculates the smallest integer value that is greater than or equal

to a number
Constant Defines a constant value
Cos Calculates the trigonometric cosine of an angle specified in radians
Cosh Calculates the hyperbolic cosine of a number
Define Defines a callable, named function
Divide Divides two numbers
Equals Compares two numbers for equality
Exp Calculates the result of Euler’s number e raised to the power of a

number
Floor Calculates the largest integer value that is less than or equal to a

number
For Executes an expression for a given number of iterations
Get Reads the value stored in a named variable within the current

scope
GreaterThan Compares if one number is greater than another
GreaterThanOrEqual Compares if a number is greater than or equal to another
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IfElse Executes one of two expressions depending on the result of a
boolean expression

Lambda Defines an immutable, anonymous function
LessThan Compares if a number is less than another
LessThanOrEqual Compares if a number is less than or equal to another
Log The node for calculating the natural logarithm of a number
Log10 Calculates the base-10 logarithm of a number
Max Calculates the maximum value of the two arguments
Min Calculates the minimum value of the two arguments
Modulus Calculates the modulus, or remainder, of two numbers
Multiply Multiplies two numbers
NOP Defines an empty expression
Not Calculates the logical NOT of a boolean value
Or Calculates the logical OR of two boolean values
Power Calculates the power of a base number and exponent
Round Rounds a number to the nearest integer
Sequence Executes two or more expressions in sequence
Set Assigns the value of a named variable within the current scope
Sign Calculates the sign of a number
Sin Calculates the trigonometric sine of an angle specified in radians
Sinh Calculates the hyperbolic sine of a number
Square Calculates the square of a number
SquareRoot Calculates the square root of a number
Subtract Subtracts two numbers
Tan Calculates the trigonometric tangent of an angle specified in radi-

ans
Tanh Calculates the hyperbolic tangent of a number
Truncate Truncates, or bounds, a number within a range
While Repeatedly executes an expression while a condition, a boolean

expression, remains true

Lets consider the problem of symbolic regression. Suppose we have a bunch of data
points, say [(0, 0), (1, 2), (2, 4), (3, 6), (4, 8), (5, 10)]. The goal of symbolic regression is to find
a mathematical expression that fits the data points. In this example, the function f(x) = x2

would work. There is typically no single, unique function that runs through all points, thus
creating issues like overfitting the data. However, this topic is outside the scope of this
manual.

For this problem, we could construct a rule set using several arithmetic operators. One
terminal is included, the variable x. We will assign this variable later when evaluating the
program. The last setting required is the return type of the program. In this case, the
program will return a number.

1 Rules rules = new Rules();
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2 rules.add(new Add());
3 rules.add(new Multiply());
4 rules.add(new Subtract());
5 rules.add(new Divide());
6 rules.add(new Sin());
7 rules.add(new Cos());
8 rules.add(new Exp());
9 rules.add(new Log());

10 rules.add(new Get(Number.class, "x"));
11 rules.setReturnType(Number.class);

7.3.2 Defining the Problem

With the rules defined, we can now define the problem. Programs require only a single
decision variable of type Program. For example, the newSolution method would appear
as follows:

1 public Solution newSolution() {
2 Solution solution = new Solution(1, 1);
3 solution.setVariable(0, new Program(rules));
4 return solution;
5 }

Inside the evaluate method, we must execute the program. Each program executes
inside an environment. The environment holds all of the variables and other identifiers that
the program can access throughout its execution. Since we previously defined the variable
x (with the Get node), we want to initialize the value of x in the environment. Once the
environment is initialized, we can evaluate the program. Since we set the return type to be
a number in the rule set, we cast the output from the program’s evaluation to a number.

1 public void evaluate(Solution solution) {
2 Program program = (Program)solution.getVariable(0);
3

4 Environment environment = new Environment();
5 environment.set("x", 15);
6

7 double result = (Number)program.evaluate(environment)).doubleValue();
8 }

Returning to our symbolic regression example, we can now create the problem definition.
Our rules will be a set of mathematical operators. Our evaluate method will compare
the original function to the approximated function. We will compare the two functions
by sampling the values at 100 different locations and compute the mean square error. By
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minimizing the mean square error, we minimize the difference between the two functions at
the sampled points. The full problem class is shown below:

1 package chapter7;
2

3 import org.moeaframework.core.Solution;
4 import org.moeaframework.core.variable.Program;
5 import org.moeaframework.problem.AbstractProblem;
6 import org.moeaframework.util.tree.Add;
7 import org.moeaframework.util.tree.Cos;
8 import org.moeaframework.util.tree.Divide;
9 import org.moeaframework.util.tree.Environment;

10 import org.moeaframework.util.tree.Exp;
11 import org.moeaframework.util.tree.Get;
12 import org.moeaframework.util.tree.Log;
13 import org.moeaframework.util.tree.Multiply;
14 import org.moeaframework.util.tree.Rules;
15 import org.moeaframework.util.tree.Sin;
16 import org.moeaframework.util.tree.Subtract;
17

18 public class FunctionMatcherProblem extends AbstractProblem {
19

20 public double[] x;
21

22 public double[] y;
23

24 private Rules rules;
25

26 public FunctionMatcherProblem() {
27 super(1, 1);
28

29 rules = new Rules();
30 rules.add(new Add());
31 rules.add(new Multiply());
32 rules.add(new Subtract());
33 rules.add(new Divide());
34 rules.add(new Sin());
35 rules.add(new Cos());
36 rules.add(new Exp());
37 rules.add(new Log());
38 rules.add(new Get(Number.class, "x"));
39 rules.setReturnType(Number.class);
40 rules.setMaxVariationDepth(10);
41

42 x = new double[100];
43 y = new double[100];
44

45 for (int i = 0; i < 100; i++) {
46 x[i] = 2.0*(i / 100.0) - 1.0; // range from -1 to 1
47 y[i] = Math.pow(x[i], 5) - 2.0*Math.pow(x[i], 3) + x[i];
48 }
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49 }
50

51 @Override
52 public Solution newSolution() {
53 Solution solution = new Solution(1, 1);
54 solution.setVariable(0, new Program(rules));
55 return solution;
56 }
57

58 public double[] calculate(Program program) {
59 double[] approximatedY = new double[x.length];
60

61 for (int i = 0; i < x.length; i++) {
62 Environment environment = new Environment();
63 environment.set("x", x[i]);
64 approximatedY[i] = ((Number)program.evaluate(environment)).doubleValue()

;
65 }
66

67 return approximatedY;
68 }
69

70 @Override
71 public void evaluate(Solution solution) {
72 Program program = (Program)solution.getVariable(0);
73

74 // calculate the difference between the approximation and actual
75 double[] approximatedY = calculate(program);
76 double difference = 0.0;
77

78 for (int i = 0; i < x.length; i++) {
79 difference += Math.pow(Math.abs(y[i] - approximatedY[i]), 2.0);
80 }
81

82 difference = Math.sqrt(difference);
83

84 // protect against NaN
85 if (Double.isNaN(difference)) {
86 difference = Double.POSITIVE_INFINITY;
87 }
88

89 solution.setObjective(0, difference);
90 }
91

92 }

MOEAFramework/book/chapter7/FunctionMatcherProblem.java

The target function is defined on lines 45-48. For this example, we are trying to match
the function x5 − 2x3 + x, plotted below.
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Use the following code to run this example:

1 package chapter7;
2

3 import org.moeaframework.Executor;
4 import org.moeaframework.analysis.plot.Plot;
5 import org.moeaframework.core.NondominatedPopulation;
6 import org.moeaframework.core.variable.Program;
7

8 public class RunFunctionMatcherProblem {
9

10 public static void main(String[] args) {
11 FunctionMatcherProblem problem = new FunctionMatcherProblem();
12

13 NondominatedPopulation result = new Executor()
14 .withAlgorithm("NSGAII")
15 .withProblemClass(FunctionMatcherProblem.class)
16 .withMaxEvaluations(10000)
17 .run();
18

19 // get the resulting function
20 Program program = (Program)result.get(0).getVariable(0);
21

22 // print the function
23 System.out.println(program);
24 System.out.println("Distance: " + result.get(0).getObjective(0));
25
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26 // display a plot comparing the two functions
27 new Plot()
28 .line("Actual", problem.x, problem.y)
29 .line("Estimated", problem.x, problem.calculate(program))
30 .show();
31 }
32

33 }

MOEAFramework/book/chapter7/RunFunctionMatcherProblem.java

The result of running this code is shown below (you may see different results each time
you run this program). The program whose output best matches the target function is:

(Program (Subtract (Sin x) (Multiply (Sin x) (Sin (Multiply (Sin x) (Add (Multiply x
(Sin (Divide x (Sin x)))) (Multiply x (Sin (Divide x (Sin x))))))))))

which results in a mean square error of only 0.0275. Not too bad. The corresponding plot
of the actual and estimated functions is shown below:

You may observe that the resulting function is more complicated as the original function.
It is certainly possible for the optimization algorithm to find the original function, but it
may require an extensive amount of time. In reality, we wouldn’t know the original function,
but would instead only have a bunch of points sampled at different locations.
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7.3.3 Custom Operators

In addition to the built-in operators, you can also define your own custom operators. Suppose
we want to define an operator to compute the hypotenuse. The operator accepts two inputs,
x and y, and returns

√
x2 + y2. Our new operator, called Hypot, must extend the Node

class, as shown below.

1 package chapter7;
2

3 import org.moeaframework.util.tree.Environment;
4 import org.moeaframework.util.tree.Node;
5

6 public class Hypot extends Node {
7

8 public Hypot() {
9 super(Number.class, Number.class, Number.class);

10 }
11

12 @Override
13 public Node copyNode() {
14 return new Hypot();
15 }
16

17 @Override
18 public Object evaluate(Environment environment) {
19 Number x = (Number)getArgument(0).evaluate(environment);
20 Number y = (Number)getArgument(1).evaluate(environment);
21

22 return Math.hypot(x.doubleValue(), y.doubleValue());
23 }
24

25 }

MOEAFramework/book/chapter7/Hypot.java

Three methods are required. The constructor, on lines 8-10, at a minimum must call
the constructor of the Node class by calling super. The first argument to super is the
output/return type, and the remaining arguments are the input types. Thus, by calling
super(Number.class, Number.class, Number.class), we are defining an oper-
ator with two numeric inputs. The copyNode method on lines 13-15 returns a duplicate
copy of the node. Finally, on lines 18-23, the evaluate method reads the arguments,
computes and returns the result.

The standard way to read arguments is shown on lines 19 and 20 and involves three
steps. Step 1 is reading the argument by calling getArgument. The argument will be
another Node, which itself could be an constant value or a more complex expression. Step
2 recursively evaluates the arguments in the given environment. Step 3 casts the result to
the appropriate type. This should be the same type we defined in the constructor.
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For flexibility, we recommend using the abstract Number class to represent numeric
values rather than Integer or Double. Doing so allows the operators to work on any
numeric inputs. The operator should automatically convert integers to doubles if required.

After defining our Hypot class, we add it to the rules:

1 rules.add(new Hypot());

7.3.4 Ant Problem

A good example of defining custom operators is the Ant problem. The ant problem defines
a world containing food at certain positions, and aims to design a robotic ant to navigate
through the world and eat the food. This robotic ant is controlled by a program consisting
of several operations:

1. if-else condition,

2. turn left,

3. turn right,

4. move forward, and

5. check if food is ahead.

We want to use the MOEA Framework to develop a program consisting of these oper-
ations, allowing the robotic ant to eat all the food. The complete code for the ant prob-
lem can be found in the examples/org/moeaframework/examples/gp/ant folder.
Each of the operations is defined in a separate Java class, such as IsFoodAhead.java
and TurnLeft.java. These operators act on a special world environment defined in
World.java. World.java defines the size of the world, the current position of the

ant, and the location of food. For example, the world initially starts off empty with some
locations containing food, as indicated by the # symbol. For example, the world could
appear as follows:

###
#
# ###
# # #
# # #
#### ##### ##

# #
# # #
# #### #
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The ant starts at location (0, 0) and, using the program, tries to follow the path of food.
As it encounters food, it changes the symbol to @ to indicate the food has been eaten. For
example, a successful ant would results in the state:

Moves: 78 / 500
Food: 36 / 36
@@@
@
@ @@@
@ @ @
@ @ @
@@@@ @@@@@ @@

@ @
@ @ @
@ @@@@ @

The rules for the ant program are shown below:

1 rules = new Rules();
2 rules.add(new TurnLeft());
3 rules.add(new TurnRight());
4 rules.add(new MoveForward());
5 rules.add(new IsFoodAhead());
6 rules.add(new IfElse(Void.class));
7 rules.add(new Sequence(Void.class, Void.class));
8 rules.setReturnType(Void.class);

So how does the MOEA Framework know how to combine these operations? The type
system. First lets consider IfElse. By passing in the type Void.class, we construct an
if-else structure with three inputs — (condition, if-case, else-case) — with types (Boolean
.class, Void.class, Void.class) and a return type of Void.class. The condition
argument is always type Boolean.java, which implies any operation that returns type
Boolean.class can fit. In this example, only one operation matches: IsFoodAhead.
The other operations — TurnLeft, TurnRight, and MoveForward — all have a return
type of Void.class. The type Void.class indicates that the expression does not return
a value.

IfElse and Sequence are special structures. You can customize the type of the
operator. For example, calling new IfElse(Void.class) says that any expression in
the if-case or else-case must return type Void.class. Likewise, calling new Sequence(
Void.class, Void.class) allows sequencing together two expressions with return type
Void.class. This means that the if-else cases and sequences can only contain operators
TurnLeft, TurnRight, MoveForward, and nested IfElse statements or Sequences.
Finally, the overall program has a return type of Void.class Note the return type is
Void.class, which indicates the program should not return a value.
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Within examples/org/moeaframework/examples/gp/ant are two larger
examples which can be executed by running SantaFeExample.java and
LosAltosExample.java. You may observe that different programs are gener-

ated for these two examples. Since we are evolving a program to solve a single example, the
program tends to be “overfit”. In other words, the program works well on the example it
was designed for, but will perform poorly on other examples. One way to combat overfitting
is to evaluate the program on multiple example. The results from each individual evaluation
could be averaged. It is also common to use a minimax approach, where you try to minimize
the maximum value (or maximimize the minimum value). In this way, you are searching for
a program with the best worst-case performance.
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Chapter 8

Integers and Mixed Integer
Programming

Another discrete type commonly seen in optimization is integers. We devote a chapter to
integers because there are actually two ways to represent integers, as we will discuss below.
Additionally, it is commonly to see problems with integers and real-values mixed together,
forming what is called mixed integer programming.

8.1 Two Representations

The MOEA Framework supports two representations for integers. One is backed by real-
values and the other by bit strings. The real-value representation is straightforward. Simply
encode your integer as a real-value and cast/truncate to an integer. The EncodingUtils.
newInt(a, b) and EncodingUtils.getInt(...) methods conveniently perform this
function. The bit string representation on the other hand is similar to the binary represen-
tation of numbers in a computer. There are caveats to using both methods, which must be
carefully understood to avoid potential pitfalls.

Real-Valued Representation for Integers

When using EncodingUtils.newInt(a, b), the underlying variable is actually a
RealVariable bounded by [a, b + 1). When reading the value using EncodingUtils.
getInt(...), the real-value is truncated using the floor operation to convert it to an
integer.

Advantages:

• Works with all algorithms and operators for real-values.

• Can be combined with other real-valued decision variables without changing operators.
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Disadvantages:

• Small changes to the underlying real value will not cause any changes when truncated
to an integer.

Bit String Representation for Integers

When using EncodingUtils.newBinaryInt(a, b), the underlying variable is actually
a BinaryVariable. The length of the bit string is chosen to encompass the bounds of the
integer. The corresponding value is read using EncodingUtils.getInt(...). There
are two methods to encode the bit string. First is the traditional binary encoding used
by computers. The disadvantage of binary encoding is that a single bit flip can cause a
substantial change to the resulting integer. Alternatively, you can use gray coding, which is
designed so that there exists a single bit flip to move between adjacent integers. This enables
smoother transitions between values, but large jumps can still occur.

Advantages:

• Works with all algorithms and operators for bit strings (binary).

• Mutation operators are guaranteed to change the value of the integer.

Disadvantages:

• If b−a < 2n, then some values will occur with higher probability (since more than one
bit pattern maps to the integer).

• Large changes to the integer value can be caused by small changes to the underlying
bit string.

Gray coding is used by default. Binary coding can be enabled by calling the constructor
new BinaryIntegerVariable(a, b, false).

Demonstration

Lets look at how both representations work on a problem. We will modify the Schaffer
problem from Chapter 2 to use integer values instead of real values. For example, here is
the version using the real-valued representation for integers:

1 package chapter8;
2

3 import org.moeaframework.core.Solution;
4 import org.moeaframework.core.variable.EncodingUtils;
5 import org.moeaframework.problem.AbstractProblem;
6

7 public class RealIntegerSchafferProblem extends AbstractProblem {
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8

9 public RealIntegerSchafferProblem() {
10 super(1, 2);
11 }
12

13 @Override
14 public void evaluate(Solution solution) {
15 double x = EncodingUtils.getInt(solution.getVariable(0));
16

17 solution.setObjective(0, Math.pow(x, 2.0));
18 solution.setObjective(1, Math.pow(x - 2.0, 2.0));
19 }
20

21 @Override
22 public Solution newSolution() {
23 Solution solution = new Solution(1, 2);
24 solution.setVariable(0, EncodingUtils.newInt(-10, 10));
25 return solution;
26 }
27

28 }

MOEAFramework/book/chapter8/RealIntegerSchafferProblem.java

Alternatively, here is the same class using the bit string representation:

1 package chapter8;
2

3 import org.moeaframework.core.Solution;
4 import org.moeaframework.core.variable.EncodingUtils;
5 import org.moeaframework.problem.AbstractProblem;
6

7 public class BinaryIntegerSchafferProblem extends AbstractProblem {
8

9 public BinaryIntegerSchafferProblem() {
10 super(1, 2);
11 }
12

13 @Override
14 public void evaluate(Solution solution) {
15 double x = EncodingUtils.getInt(solution.getVariable(0));
16

17 solution.setObjective(0, Math.pow(x, 2.0));
18 solution.setObjective(1, Math.pow(x - 2.0, 2.0));
19 }
20

21 @Override
22 public Solution newSolution() {
23 Solution solution = new Solution(1, 2);
24 solution.setVariable(0, EncodingUtils.newBinaryInt(-10, 10));
25 return solution;
26 }
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27

28 }

MOEAFramework/book/chapter8/BinaryIntegerSchafferProblem.java

Observe that only line 24 changes. Since both representations are read using
EncodingUtils.getInt(...), the evaluate method remains unchanged. We can
then run both versions:

1 package chapter8;
2

3 import org.moeaframework.Executor;
4 import org.moeaframework.core.NondominatedPopulation;
5 import org.moeaframework.core.Solution;
6 import org.moeaframework.core.variable.EncodingUtils;
7

8 public class RunIntegerSchafferProblems {
9

10 public static void main(String[] args) {
11 NondominatedPopulation result1 = new Executor()
12 .withAlgorithm("NSGAII")
13 .withProblemClass(BinaryIntegerSchafferProblem.class)
14 .withMaxEvaluations(10000)
15 .run();
16

17 NondominatedPopulation result2 = new Executor()
18 .withAlgorithm("NSGAII")
19 .withProblemClass(RealIntegerSchafferProblem.class)
20 .withMaxEvaluations(10000)
21 .run();
22

23 System.out.println("Binary Integer Encoding:");
24 for (Solution solution : result1) {
25 System.out.printf(" %d => %.5f, %.5f\n",
26 EncodingUtils.getInt(solution.getVariable(0)),
27 solution.getObjective(0),
28 solution.getObjective(1));
29 }
30

31 System.out.println();
32 System.out.println("Real Integer Encoding:");
33 for (Solution solution : result2) {
34 System.out.printf(" %d => %.5f, %.5f\n",
35 EncodingUtils.getInt(solution.getVariable(0)),
36 solution.getObjective(0),
37 solution.getObjective(1));
38 }
39 }
40

41 }
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MOEAFramework/book/chapter8/RunIntegerSchafferProblems.java

Which produces the following output:

Binary Integer Encoding:
0 => 0.00000, 4.00000
1 => 1.00000, 1.00000
2 => 4.00000, 0.00000

Real Integer Encoding:
0 => 0.00000, 4.00000
1 => 1.00000, 1.00000
2 => 4.00000, 0.00000

On a simple problem such as this, both representations produce identical results. On more
complex problems, you may observe some differences in performance based on which version
is used. Experimentation is a good way to determine which version is appropriate for your
problem.

8.2 Mixed Integer Programming

Real-world problems tend to not exclusively use only real-values or integers, but instead
are formulated as a combination of decision variable types. When mixing real values and
integers, one must be mindful of the underlying representation for integers. For example,
lets modify the Srinivas problem from Chapter 3 to include one integer and one real-valued
decision variable:

1 package chapter8;
2

3 import org.moeaframework.core.Solution;
4 import org.moeaframework.core.variable.EncodingUtils;
5 import org.moeaframework.problem.AbstractProblem;
6

7 public class MixedIntegerSrinivasProblem extends AbstractProblem {
8

9 public MixedIntegerSrinivasProblem() {
10 super(2, 2, 2);
11 }
12

13 @Override
14 public void evaluate(Solution solution) {
15 int x = EncodingUtils.getInt(solution.getVariable(0));
16 double y = EncodingUtils.getReal(solution.getVariable(1));
17 double f1 = Math.pow(x - 2.0, 2.0) + Math.pow(y - 1.0, 2.0) + 2.0;
18 double f2 = 9.0*x - Math.pow(y - 1.0, 2.0);
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19 double c1 = Math.pow(x, 2.0) + Math.pow(y, 2.0) - 225.0;
20 double c2 = x - 3.0*y + 10.0;
21

22 solution.setObjective(0, f1);
23 solution.setObjective(1, f2);
24 solution.setConstraint(0, c1 <= 0.0 ? 0.0 : c1);
25 solution.setConstraint(1, c2 <= 0.0 ? 0.0 : c2);
26 }
27

28 @Override
29 public Solution newSolution() {
30 Solution solution = new Solution(2, 2, 2);
31

32 solution.setVariable(0, EncodingUtils.newBinaryInt(-20, 20));
33 solution.setVariable(1, EncodingUtils.newReal(-20.0, 20.0));
34

35 return solution;
36 }
37

38 }

MOEAFramework/book/chapter8/MixedIntegerSrinivasProblem.java

If using the real-valued representation for integers, then the same operators can be shared for
both real-values and integers. However, if you try to combine the bit string representation
with other real-valued variables, you will see the following error:

Exception in thread "main" org.moeaframework.core.spi.
ProviderNotFoundException: no provider for NSGAII

at org.moeaframework.algorithm.StandardAlgorithms.getAlgorithm(
StandardAlgorithms.java:248)

at org.moeaframework.core.spi.AlgorithmFactory.instantiateAlgorithm(
AlgorithmFactory.java:175)

at org.moeaframework.core.spi.AlgorithmFactory.getAlgorithm(AlgorithmFactory
.java:137)

at org.moeaframework.Executor.runSingleSeed(Executor.java:773)
at org.moeaframework.Executor.run(Executor.java:730)
at chapter8.RunMixedIntegerSrinivasProblem.main(

RunMixedIntegerSrinivasProblem.java:16)
Caused by: org.moeaframework.core.spi.ProviderLookupException: unable to find

suitable variation operator
at org.moeaframework.core.spi.OperatorFactory.lookupVariationHint(

OperatorFactory.java:347)
at org.moeaframework.core.spi.OperatorFactory.getVariation(OperatorFactory.

java:182)
at org.moeaframework.core.spi.OperatorFactory.getVariation(OperatorFactory.

java:160)
at org.moeaframework.algorithm.StandardAlgorithms.newNSGAII(

StandardAlgorithms.java:329)
at org.moeaframework.algorithm.StandardAlgorithms.getAlgorithm(

StandardAlgorithms.java:207)
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... 5 more

Note the line that says “unable to find suitable variation operator”. This is an indication
that no operator is compatible with the decision variables in the problem. The MOEA
Framework automatically determines the appropriate operators given the decision variable
types. However, this only works when all decision variables are the same type. If you try
to mix the bit string representation of integers with other real-valued variables, you will run
into this error. However, in most cases we can address this error by explicitly specifying the
operators to use:

1 package chapter8;
2

3 import org.moeaframework.Executor;
4 import org.moeaframework.core.NondominatedPopulation;
5 import org.moeaframework.core.Solution;
6 import org.moeaframework.core.variable.EncodingUtils;
7

8 public class RunMixedIntegerSrinivasProblem {
9

10 public static void main(String[] args) {
11 NondominatedPopulation result = new Executor()
12 .withAlgorithm("NSGAII")
13 .withProblemClass(MixedIntegerSrinivasProblem.class)
14 .withMaxEvaluations(10000)
15 .withProperty("operator", "sbx+hux+pm+bf")
16 .run();
17

18 for (Solution solution : result) {
19 if (!solution.violatesConstraints()) {
20 System.out.format("%3d %7.3f => %7.3f %7.3f%n",
21 EncodingUtils.getInt(solution.getVariable(0)),
22 EncodingUtils.getReal(solution.getVariable(1)),
23 solution.getObjective(0),
24 solution.getObjective(1));
25 }
26 }
27 }
28

29 }

MOEAFramework/book/chapter8/RunMixedIntegerSrinivasProblem.java

Here, we explicitly specify the operators to use on line 15. Since we are combining bit
string and real-valued variables, we must include operators for both types using the operator
string "sbx+hux+pm+bf". Each operator is applied in the order they appear in the string.
Furthermore, we want crossover operators to appear at the beginning and mutation operators
at the end. All operators are type-safe, meaning they will only affect decision variables of
the supported type. For example, the "hux" and "bf" (bit flip) operators will only affect
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bit strings, while "sbx" and "pm" will only evolve real-values.
Such overloading of operators is also necessary when mixing other decision variable types.

Again, just follow the rules above for setting the operator string. In the event that you pro-
vide an invalid combination of operators, then you will be given an error message describing
the problem.
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Chapter 9

I/O Basics

This chapter talks all about I/O: input and output. We’ll walk through several use cases
and provides example code.

9.1 Printing Solutions

The first thing you’ll likely want to do after solving a problem with the MOEA Framework
is viewing your solutions. Suppose we want to print the decision variables and objectives for
all solutions in a result set:

1 package chapter9;
2

3 import java.io.IOException;
4

5 import org.moeaframework.Executor;
6 import org.moeaframework.core.NondominatedPopulation;
7 import org.moeaframework.core.Solution;
8

9 import chapter2.SchafferProblem;
10

11 public class PrintSolutions {
12

13 public static void main(String[] args) throws IOException {
14 NondominatedPopulation result = new Executor()
15 .withAlgorithm("NSGAII")
16 .withProblemClass(SchafferProblem.class)
17 .withMaxEvaluations(10000)
18 .run();
19

20 for (int i = 0; i < result.size(); i++) {
21 Solution solution = result.get(i);
22 System.out.print("Solution " + i + ":");
23

24 for (int j = 0; j < solution.getNumberOfVariables(); j++) {
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25 System.out.print(" ");
26 System.out.print(solution.getVariable(j));
27 }
28

29 System.out.print(" =>");
30

31 for (int j = 0; j < solution.getNumberOfObjectives(); j++) {
32 System.out.print(" ");
33 System.out.print(solution.getObjective(j));
34 }
35

36 System.out.println();
37 }
38 }
39

40 }

MOEAFramework/book/chapter9/PrintSolutions.java

The following output is produced:

Solution 0: 2.0004392968937066 => 4.001757380556588 1.929817608202561E-7
Solution 1: -3.7964704972906493E-4 => 1.441318823679831E-7 4.001518732330799
Solution 2: 0.06057459075229121 => 0.0036692810448075643 3.7613709180356425
Solution 3: 1.657358848462215 => 2.7468383525759994 0.11740295872713932
Solution 4: 0.9436776287650016 => 0.8905274670315362 1.11581695197153
Solution 5: 1.8601691079468476 => 3.460229110159771 0.019552678372380346
Solution 6: 1.4155832357245992 => 2.003875897264526 0.34154295436612936
...

We could clean up this output in several ways. First, the output shows way too many decimal
digits. We can print formatted numbers as follows:

1 for (int i = 0; i < result.size(); i++) {
2 Solution solution = result.get(i);
3 System.out.print("Solution " + i + ":");
4

5 for (int j = 0; j < solution.getNumberOfVariables(); j++) {
6 System.out.printf(" %.3f", EncodingUtils.getReal(solution.getVariable(

j)));
7 }
8

9 System.out.print(" =>");
10

11 for (int j = 0; j < solution.getNumberOfObjectives(); j++) {
12 System.out.printf(" %.3f", solution.getObjective(j));
13 }
14

15 System.out.println();
16 }
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17 }

MOEAFramework/book/chapter9/PrintFormattedSolutions.java

This is better:

Solution 0: 0.000 => 0.000 4.001
Solution 1: 2.000 => 4.001 0.000
Solution 2: 1.048 => 1.099 0.906
Solution 3: 0.374 => 0.140 2.643
Solution 4: 0.335 => 0.113 2.771
Solution 5: 0.418 => 0.175 2.503
Solution 6: 1.947 => 3.790 0.003
...

A second improvement would be to order the solutions. Right now, the solutions appear in
a random order. However, we could sort them lexicographically by their objective values.

1 result.sort(new LexicographicalComparator());

MOEAFramework/book/chapter9/PrintLexicographicalOrdering.java

Solution 0: 0.000 => 0.000 4.000
Solution 1: 0.020 => 0.000 3.919
Solution 2: 0.024 => 0.001 3.903
Solution 3: 0.043 => 0.002 3.831
Solution 4: 0.047 => 0.002 3.815
Solution 5: 0.075 => 0.006 3.707
Solution 6: 0.103 => 0.011 3.599
...

Great. Now we can clearly see an inverse relationship between the two objectives. As the
first objective increases, the second objective decreases.

Note: When printing result sets, always remember to check solution.
violatesConstraints() if the problem has constraints. Otherwise, you may display
infeasible solutions in the output.

9.2 Files

Instead of printing the information to the console, we can save the solutions directly to a
file. There are advantages and disadvantages of using files. The primary advantage is that
you can load the saved data. For example, you could save the results from several runs, then
load them in later to generate plots. The primary disadvantage is that the generated file is
not human-readable. You can’t open the saved file in a text editor to see its contents. It can
only be reloaded into the MOEA Framework.
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We use the PopulationIO class to read and write files. For example, here we save the
result to a file:

1 try {
2 PopulationIO.write(new File("solutions.dat"), result);
3 System.out.println("Saved " + result.size() + " solutions!");
4 } catch (IOException e) {
5 e.printStackTrace();
6 }

MOEAFramework/book/chapter9/SaveToFile.java

The file can then be loaded back into the MOEA Framework:

1 try {
2 Population result = PopulationIO.read(new File("solutions.dat"));
3

4 System.out.println("Read " + result.size() + " solutions!");
5 } catch (IOException e) {
6 e.printStackTrace();
7 }

MOEAFramework/book/chapter9/LoadFromFile.java

If you need to save the solutions in a human-readable format, use the printing commands
from the previous section.

9.3 Checkpoints

If checkpoints are enabled, a running algorithm will periodically save checkpoint files. The
checkpoint file stores the current state of the algorithm. If the run is interrupted, such as dur-
ing a power outage, the run can be resumed at the last saved checkpoint. Checkpointing can
be enabled when using the Executor to run algorithms. Calling setCheckpointFile

sets the file location for the checkpoint file, and checkpointEveryIteration or
setCheckpointFrequency control how frequently the checkpoint file is saved.

Resuming a run from a checkpoint occurs automatically. If the checkpoint file does not
exist, a run starts from the beginning. However, if the checkpoint file exists, then the run is
automatically resumed at that checkpoint. For this reason, care must be taken when using
checkpoints as they can be a source of confusion for new users. For instance, using the same
checkpoint file from an unrelated run can cause unexpected behavior or an error. For this
reason, checkpoints are recommended only when solving time-consuming problems.

1 package chapter9;
2

3 import java.io.File;
4

5 import org.moeaframework.Executor;
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6 import org.moeaframework.core.NondominatedPopulation;
7

8 import chapter2.SchafferProblem;
9

10 public class Checkpoints {
11

12 public static void main(String[] args) {
13 File checkpointFile = new File("checkpoint.dat");
14 long start = System.currentTimeMillis();
15

16 if (checkpointFile.exists()) {
17 System.out.println("Checkpoint file exists, will resume from prior run!"

);
18 }
19

20 NondominatedPopulation result = new Executor()
21 .withAlgorithm("NSGAII")
22 .withProblemClass(SchafferProblem.class)
23 .withMaxEvaluations(1000000)
24 .withCheckpointFrequency(10000)
25 .withCheckpointFile(checkpointFile)
26 .run();
27

28 System.out.println("Elapsed time: " + (System.currentTimeMillis() - start)
/ 1000 + "s");

29 }
30

31 }

MOEAFramework/book/chapter9/Checkpoints.java

The first time you run this code, it’ll take several seconds to produce the result. If you
run the code a second time, it should terminate immediately since the checkpoint file exists.
Note that checkpoint files are never deleted by the MOEA Framework. Each time you run
this example, it will resume from its last save point. If you want to run this example from
the beginning, you must delete the checkpoint file manually.

9.4 Creating Reference Sets

All of the test problems provided by the MOEA Framework are accompanied by a pre-
defined reference set. The reference set contains the Pareto optimal solutions to a problem,
or if the set is too large, an approximation of the Pareto optimal solutions. If you are
working on a new problem, you may not have a reference set available. A common method
of generating reference sets, particularly for real-world problems, is to solve the problem
using many different algorithms repetitively. The combined result from all runs becomes
your reference set.

Lets start by generating the reference set for the Schaffer problem:
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1 package chapter9;
2

3 import java.io.File;
4 import java.io.IOException;
5

6 import org.moeaframework.Executor;
7 import org.moeaframework.core.NondominatedPopulation;
8 import org.moeaframework.core.PopulationIO;
9

10 import chapter2.SchafferProblem;
11

12 public class CreatingReferenceSet {
13

14 public static void main(String[] args) throws IOException {
15 int nseeds = 25;
16 String[] algorithms = new String[] { "NSGAII", "GDE3", "OMOPSO" };
17

18 NondominatedPopulation referenceSet = new NondominatedPopulation();
19

20 Executor executor = new Executor()
21 .withProblemClass(SchafferProblem.class)
22 .withMaxEvaluations(10000);
23

24 for (String algorithm : algorithms) {
25 executor.withAlgorithm(algorithm);
26

27 for (int i = 0; i < nseeds; i++) {
28 referenceSet.addAll(executor.run());
29 }
30 }
31

32 PopulationIO.writeObjectives(new File("Schaffer.pf"), referenceSet);
33 }
34

35 }

MOEAFramework/book/chapter9/CreatingReferenceSet.java

On line 18 we create the NondominatedPopulation that will store the combined
Pareto solutions from all runs. The loop on line 24 runs each of our test algorithms for 25
repetitions. Finally, we save the reference set to a file on line 32.

When using a NondominatedPopulation, an issue one frequently encounters is that
the sets can become arbitrarily large. There is no bound on the size of the set. The only
restriction is that all solutions must be non-dominated. After running the above code, we
observed that the set contained 9700 solutions. This can become cumbersome to work with
in practice!

A common technique for reducing the size of a reference set is to use ε-dominance (Lau-
manns et al., 2002). ε-dominance is similar to Pareto dominance, except the ε defines a
minimum resolution of solutions. Larger εs produce smaller sets. With a small tweak to the
previous code, we can define εs:
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1 NondominatedPopulation referenceSet = new EpsilonBoxDominanceArchive(
2 new double[] { 0.1, 0.1 });

MOEAFramework/book/chapter9/CreatingReferenceSetWithEpsilons.java

With εs, the resulting reference set contains only 20 solutions. Plotting the two sets
shows the drastic difference:

1 package chapter9;
2

3 import java.io.File;
4 import java.io.IOException;
5

6 import org.moeaframework.analysis.plot.Plot;
7 import org.moeaframework.core.Population;
8 import org.moeaframework.core.PopulationIO;
9

10 public class PlotReferenceSet {
11

12 public static void main(String[] args) throws IOException {
13 Population withEpsilons = PopulationIO.readObjectives(
14 new File("Schaffer_Epsilon.pf"));
15

16 Population withoutEpsilons = PopulationIO.readObjectives(
17 new File("Schaffer.pf"));
18

19 new Plot()
20 .add("With Epsilons", withEpsilons)
21 .add("Without Epsilons", withoutEpsilons)
22 .show();
23 }
24

25 }

MOEAFramework/book/chapter9/PlotReferenceSet.java
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Observe that the red and blue points lie on the same curve, except we approximate the
curve with significantly fewer red points. If using this reference set in practice, we would
probably want to pick slightly smaller εs, since 20 points may be too small. For this problem,
100 would be ideal.
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Chapter 10

Performance Enhancements

This chapter details two ways to improve the performance of your optimization. The first
utilizes multithreading on your computer to utilize all available computing cores. The second
rewrites the problem definition in another language. We consider compiling to a native
library using C/C++ and writing functions in Python. Other languages can be supported
following similar techniques.

10.1 Multithreading

When you typically optimize a program, you evaluate one solution at a time. This is a
single-threaded program, where each step is performed sequentially. However, most modern
day computers have processors with multiple computing cores. Suppose a computer has
4 cores. A single-threaded program would only utilize 1 of the 4 cores, or 25% of the
available resources. Multithreaded programs are designed to split the computations into
multiple execution threads, each of which can be executed on a separate core simultaneously.
In the context of an MOEA, as shown below, the objective function evaluations can be
multithreaded.
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This diagram depicts the 2 core multithreaded program achieving twice as many eval-
uations as the single threaded program. In reality, it is a bit more nuanced. First, not
all MOEAs can support multithreading. Some are inherently single threaded. The MOEA
Framework uses special “future” objects to automatically detect if an MOEA support multi-
threading. Second, there is often additional overhead encountered when using multithreading
or any type of parallelization. This overhead comes from a variety of sources, but perhaps
the most common source of overhead is from communicating data between the two cores
in memory. Memory access tends to be significantly slower than CPU processing. If the
problem consists only of a few lines of code, then likely the evaluation time is less than the
communication overhead. Enabling multithreading would slow down the program in this
case. Third, if you attempt to utilize all cores on a computer, particularly one with iterative
user sessions such as Windows, you will have to compete with other programs for time on
the CPU.

To demonstrate this, we will modify our Schaffer problem. The original Schaffer problem
is very simple and very fast to compute. To slow down the evaluations, lets add a loop to
add some additional computing time to each function evaluation:

1 double sum = 0.0;
2

3 for (int i = 0; i < 100000; i++) {
4 sum += i;
5 }

On a modern computer, this adds approximately 0.1 milliseconds per evaluation. Thus,
our new Schaffer problem, which we call ExpensiveSchafferProblem, would appear as
follows:

1 package chapter10;
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2

3 import org.moeaframework.core.Solution;
4 import org.moeaframework.core.variable.EncodingUtils;
5 import org.moeaframework.problem.AbstractProblem;
6

7 public class ExpensiveSchafferProblem extends AbstractProblem {
8

9 public ExpensiveSchafferProblem() {
10 super(1, 2);
11 }
12

13 @Override
14 public void evaluate(Solution solution) {
15 double x = EncodingUtils.getReal(solution.getVariable(0));
16

17 // perform some expensive calculation
18 double sum = 0.0;
19

20 for (int i = 0; i < 100000; i++) {
21 sum += i;
22 }
23

24 solution.setObjective(0, Math.pow(x, 2.0));
25 solution.setObjective(1, Math.pow(x - 2.0, 2.0));
26 }
27

28 @Override
29 public Solution newSolution() {
30 Solution solution = new Solution(1, 2);
31 solution.setVariable(0, EncodingUtils.newReal(-10.0, 10.0));
32 return solution;
33 }
34

35 }

MOEAFramework/book/chapter10/ExpensiveSchafferProblem.java

Enabling multithreading in the MOEA Framework is straightforward: when using the
Executor simply call distributeOnAllCores() to run on all available cores, or call
distributeOn(N) to run on N cores. Any optimization algorithm that supports mul-
tithreading will automatically distribute evaluations on the requested number of cores on
your computer. In the following code, we compare the runtime between the single threaded
version and a multithreaded version:

1 package chapter10;
2

3 import org.moeaframework.Executor;
4

5 public class TestTiming {
6

7 public static void main(String[] args) {
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8 long startTime;
9

10 // run without multithreading
11 startTime = System.currentTimeMillis();
12

13 new Executor()
14 .withAlgorithm("NSGAII")
15 .withProblemClass(ExpensiveSchafferProblem.class)
16 .withMaxEvaluations(10000)
17 .run();
18

19 System.out.println("Single threaded: " + (System.currentTimeMillis()-
startTime));

20

21 // run with mulithreading
22 startTime = System.currentTimeMillis();
23

24 new Executor()
25 .withAlgorithm("NSGAII")
26 .withProblemClass(ExpensiveSchafferProblem.class)
27 .withMaxEvaluations(10000)
28 .distributeOnAllCores()
29 .run();
30

31 System.out.println("Multithreading: " + (System.currentTimeMillis()-
startTime));

32 }
33

34 }

MOEAFramework/book/chapter10/TestTiming.java

Prior to running the example, it is important to set the -Djava.compiler=NONE
Java VM option. Without this option, Java will attempt to optimize our program and will
remove the for loop. In practice, this optimization is very useful, but for this demonstration
we must temporarily disable it. In Eclipse, you set it in the run configuration window, as
shown below.
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Running this program produces the output below:

Single threaded: 14339
Multithreading: 4679

It took 14.3 seconds for the single threaded program and 4.6 seconds for the multithreaded
program on an 4 core machine. We would expect the multithreaded program to run in
14.3/4 = 3.575 seconds, but due to overhead it takes much longer. When comparing single
threaded and multithreaded programs, there are two useful calculations. The first is speedup:

S = Ts/Tp, (10.1)

where S is the parallel speedup, Ts is the total runtime for the single threaded (or serial) ver-
sion, and Tp is the total runtime for the multithreaded (or parallel) version. In our example,
the speedup is 14.3/4.6 = 3.1, meaning that our multithreaded version runs approximately
three times faster. The second calculation is efficiency:

E = S/p, (10.2)

where E is the parallel efficiency, S is the parallel speedup, and p is the number of processors
or cores. Thus, in our example, the efficiency is 3.1/4 = 0.78 or 78%. In other words, we
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utilized 78% of the available computing resources. The remaining 22% is lost due to over-
head. Larger overheads require longer evaluation times in order to achieve higher efficiency.
Conversely, smaller overheads make multithreading and parallelization more efficient. If the
overhead is quite large or the evaluation time is too short, it is possible for the multithreaded
version to take longer to run! If considering the use of multithreading, it is good practice to
test the speedup and efficiency on a small run.

10.2 Termination Conditions

In all of the examples seen thus far, we have run the algorithm for a fixed number of eval-
uations using withMaxEvaluations(...). Running for a fixed number of evaluations
is commonly used when comparing different algorithms, since each algorithm will be given
the same number of evaluations. However, in practical situations, one is often limited by
computing resources. For example, management may require an engineering team to devise
a feasible solution within a day or just a few hours. This can be achieved by replacing
withMaxEvaluations(...) with withMaxTime(...).

1 new Executor()
2 .withAlgorithm("NSGAII")
3 .withProblemClass(ExpensiveSchafferProblem.class)
4 .withMaxTime(30000) // 30 seconds
5 .run();

MOEAFramework/book/chapter10/TerminationCondition.java

In this example, we are running the algorithm for 30 seconds, as indicated by
withMaxTime(30000). Note that the time is specified in milliseconds (1 second = 1000
milliseconds).

You may notice that the algorithm takes slightly longer than 30 seconds to run. This
is because the algorithm is allowed to finish the current iteration before terminating. For
problems with longer evaluation times, this can become more noticeable. Be aware of this
when scheduling jobs on computing resources that have hard time limits.

10.3 Native Compilation

While Java itself is a fast language compared to interpreted languages like Python, it still
remains around 2-3 times slower than C, C++, and Fortran. If your evaluation contains a
non-trivial amount of code, you could experience speedup by writing the evaluation code in
one of these languages and compiling the code natively. Java Native Access (JNA)1 is an
open source library that lets a Java program invoke natively compiled code. If your problem
is already written in one of these native languages, you can also use JNA to call the functions
directly.

1https://github.com/java-native-access/jna
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Lets continue with the Schaffer problem. Suppose we wanted to re-write the Schaffer
problem in C. We would need a C function with two arguments: an array of decision variables
and an array of the objectives. If the problem has constraints, we would include a third array.
Our function, called schaffer, would look like:

1 #include <math.h>
2

3 void schaffer(double* vars, double* objs) {
4 objs[0] = pow(vars[0], 2.0);
5 objs[1] = pow(vars[0] - 2.0, 2.0);
6 }

MOEAFramework/book/chapter10/schaffer.c

We can then compile this code to a native shared library as shown below.

gcc -O3 -shared -o schaffer.dll schaffer.c -lm

When compiling code natively, there are many issues that can arise. First, you must
determine if your computer is 32-bit or 64-bit. If you have a 64-bit computer, you will want
to ensure that your installed version of Java is 64-bit. You will likely also need to include
the -m64 option when compiling the example code, as shown below. Failing to do so will
produce an UnsatisfiedLinkException error message when running this example.

gcc -m64 -O3 -shared -o schaffer.dll schaffer.c -lm

Second, you must install an appropriate compiler for your system. If using a 64-bit machine,
be sure to get a 64-bit compatible compiler. On Windows, we recommend MinGW2. Third,
you will need to use an appropriate shared library extension for your operating system. As
shown in these examples, we use the .dll extension on Windows. Following a Unix/Linux
naming convention, you would call the library libschaffer.so.

Next, we need to write a Java class that interfaces with the native library we just com-
piled, as shown below:

1 package chapter10;
2

3 import org.moeaframework.core.Solution;
4 import org.moeaframework.core.variable.EncodingUtils;
5 import org.moeaframework.problem.AbstractProblem;
6

7 import com.sun.jna.Native;
8

9 public class JNASchafferProblem extends AbstractProblem {

2http://www.mingw.org/
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10

11 public static native double schaffer(double[] vars, double[] objs);
12

13 static {
14 System.setProperty("jna.library.path", "./book/chapter9");
15 Native.register("schaffer");
16 }
17

18 public JNASchafferProblem() {
19 super(1, 2);
20 }
21

22 @Override
23 public void evaluate(Solution solution) {
24 double[] vars = EncodingUtils.getReal(solution);
25 double[] objs = new double[solution.getNumberOfObjectives()];
26

27 schaffer(vars, objs);
28

29 solution.setObjectives(objs);
30 }
31

32 @Override
33 public Solution newSolution() {
34 Solution solution = new Solution(1, 2);
35 solution.setVariable(0, EncodingUtils.newReal(-10.0, 10.0));
36 return solution;
37 }
38

39 }

MOEAFramework/book/chapter10/JNASchafferProblem.java

As with previous problems, we extend the AbstractProblem. However, unlike previ-
ous examples, we need to connect this code to the native library. First, on line 11, we create a
“native” version of the schaffer function. The name and arguments to this function must
match the name and arguments of the C function. In this case, a double array (double[])
maps to a double pointer in C (double*).

Second, on lines 13-16, we connect our Java class with the native library using JNA. We
first set the jna.library.path system property on line 14 to include the path to the
compiled library (i.e., schaffer.dll). This is necessary for JNA to locate the library.
Then, on line 15, we call Native.register("schaffer") register the code with JNA.
JNA searches its library path for the shared library, called schaffer.dll (on Windows)
or libschaffer.so (on Linux). Upon finding the library, it loads it into memory and
configures Java so that calls to the schaffer method in Java are forwarded to the native
library.

Finally, in the evaluate method on lines 23-30, we call the schaffer method to
evaluate the problem. On line 24, we create a double array with the decision variables,
and on line 25 we create an empty array to store the resulting objectives. The schaffer
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method is invoked on line 27 to call the underlying native code. Lastly, we set the objectives
for the solution. One would handle constraints similarly.

We can then optimize the problem as we have done in the past:

1 NondominatedPopulation result = new Executor()
2 .withAlgorithm("NSGAII")
3 .withProblemClass(JNASchafferProblem.class)
4 .withMaxEvaluations(10000)
5 .run();

MOEAFramework/book/chapter10/ComparingCInterface.java

10.4 Standard I/O

If native compilation is not an option, the MOEA Framework also supports running models
via standard I/O or network sockets with the ExternalProblem class. Here, we will
discuss standard I/O using Python.

The ExternalProblem class defines a very simple interface for communicating with
models over standard input and output (I/O). When the optimization starts, the MOEA
Framework launches the process for evaluating solutions. For each solution, it sends a single
line to the process containing the decision variables using whitespace to separate values. For
example, it would pass five real-valued decision variables as:

0.109 0.912 0.3 0.291 0.154

The process parses the input line, evaluates the problem, and writes the objectives and
constraints to its standard output, again separated by whitespace. For example, a problem
with two objectives would write:

1.05 0.9

Any constraints would appear on the same line following the objective values. If the
process receives a blank line, it terminates as the optimization has finished. For example,
our Schaffer problem could be written in Python as follows:

1 from sys import *
2 from math import *
3

4 while True:
5 # Read the next line from standard input
6 line = raw_input()
7

8 # If line is empty, stop
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9 if line == "":
10 break
11

12 # Parse the decision variables from the input
13 vars = map(float, line.split())
14

15 # Evaluate the Schaffer problem
16 objs = (vars[0]**2, (vars[0] - 2)**2)
17

18 # Print objectives to standard output, flush to write immediately
19 print "%f %f" % objs
20 stdout.flush()

MOEAFramework/book/chapter10/schaffer.py

Line 4 starts an infinite loop that reads each line of input (line 6) and terminates only if
a blank line is encountered (line 9). Line 13 parses each value from the input into the array
vars. Next, the objectives are calculated on line 16 and written to the process’ output on
line 19. Always flush the output to immediately print the objectives as shown on line 20,
otherwise the program may stall.

In addition to the Python code, we must also create a Java class to represent the problem.
Unlike the previous examples, when connecting to an external process in this manner, we
want to extend the ExternalProblem class, as shown below:

1 package chapter10;
2

3 import java.io.IOException;
4

5 import org.moeaframework.core.Solution;
6 import org.moeaframework.core.variable.EncodingUtils;
7 import org.moeaframework.problem.ExternalProblem;
8

9 public class StdioSchafferProblem extends ExternalProblem {
10

11 public StdioSchafferProblem() throws IOException {
12 super("python", "book/chapter9/schaffer.py");
13 }
14

15 @Override
16 public String getName() {
17 return "ExternalSchafferProblem";
18 }
19

20 @Override
21 public int getNumberOfConstraints() {
22 return 0;
23 }
24

25 @Override
26 public int getNumberOfObjectives() {
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27 return 2;
28 }
29

30 @Override
31 public int getNumberOfVariables() {
32 return 1;
33 }
34

35 @Override
36 public Solution newSolution() {
37 Solution solution = new Solution(1, 2);
38 solution.setVariable(0, EncodingUtils.newReal(-10.0, 10.0));
39 return solution;
40 }
41

42 }

MOEAFramework/book/chapter10/StdioSchafferProblem.java

When extending the ExternalProblem class, we need to specify in the constructor
the program to execute. In this case, we are running a Python script, so we need to invoke
the Python interpreter on our schaffer.py file (line 12). However, once the Java class
is defined, we optimize it like any other problem:

1 new Executor()
2 .withAlgorithm("NSGAII")
3 .withProblemClass(StdioSchafferProblem.class)
4 .withMaxEvaluations(10000)
5 .run();

MOEAFramework/book/chapter10/ComparingCInterface.java

Lets take a quick look at how these interface options compare. Below we show the runtime
for the Schaffer problem when it is implemented completely in Java, when we connect to a
native library using JNA, and when we communicate via standard I/O.

Pure Java: 262
Via JNA: 377
Via Standard I/O: 532

Due to the simplicity of our problem, the pure Java option is fastest. For more complex
problems, we would expect the C version to run faster. The JNA version adds an overhead
of approximately 0.0115 milliseconds per evaluation, whereas the standard I/O version adds
an overhead of approximately 0.027 milliseconds per evaluation.
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10.5 A Note on Concurrency

We demonstrated two ways to interface with problems written in different languages: JNA
and Standard I/O. One of the advantages of JNA is that it can be combined with multi-
threaded evaluations. This requires that the native code you write in C or other language be
reentrant. The term reentrant means that the function can be called multiple times, before
prior calls have exited, and produce correct results. In order for a function to be reentrant,
several rules should be followed3:

• The function must to access any static or global data that is not a constant.

• The function must not modify its own code

• The function must not call other non-reentrant functions

In our example C code, the schaffer function is entirely self-contained. It only reads
the decision variables provided as an input to the function and returns the objectives. Thus,
this function is reentrant.

If you have a problem that is non-reentrant, it is good practice to make Java’s evaluate
method synchronized. In you problem definition, you would define the evaluate method
as follows:

1 public synchronized void evaluate(Solution solution) {
2 // body of method
3 }

The synchronized keyword ensures that the evaluate method can be invoked one
at a time. Thus, the synchronize keyword will prevent someone from accidentally paral-
lelizing your problem.

3https://en.wikipedia.org/wiki/Reentrancy_(computing)
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Appendix A

List of Algorithms

This appendix lists the available algorithms, a short description of the distinct features of the
algorithm, and a list of the parameters and default values. Most of these algorithms support
a variety of crossover and/or mutation operators. In those cases, refer to Appendix B for a
list of the operators and their parameters.

CMA-ES

CMA-ES is a sophisticated covariance matrix adaptation evolution strategy algorithm for
real-valued global optimization (Hansen and Kern, 2004; Igel et al., 2007). CMA-ES produces
offspring by sampling a distribution formed by a covariance matrix, hence the name, and
updating the covariance matrix based on the surviving offspring. Single and multi-objective
variants exist in the literature and both are supported by the MOEA Framework.
Parameters Description Default Value
lambda The offspring population size 100
cc The cumulation parameter 1

cs The step size of the cumulation parameter 1

damps The damping factor for the step size 1

ccov The learning rate 1

ccovsep The learning rate when in diagonal-only mode 1

sigma The initial standard deviation 0.5
diagonalIterations The number of iterations in which only the covari-

ance diagonal is used
0

indicator Either "hypervolume" or "epsilon" to spec-
ify the use of the hypervolume or additive-epsilon
indicator. If unset, crowding distance is used

Unset

initialSearchPoint Initial guess at the starting location (comma-
separated values). If unset, a random initial guess
is used

Unset

1Parameter value is derived from other settings. See Igel et al. (2007) for details.
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ε-MOEA

ε-MOEA is a steady-state MOEA that uses ε-dominance archiving to record a diverse set of
Pareto optimal solutions Deb et al. (2003). The term steady-state means that the algorithm
evolves one solution at a time. This is in contrast to generational algorithms, which evolve
the entire population every iteration. ε-dominance archives are useful since they ensure
convergence and diversity throughout search Laumanns et al. (2002). However, the algorithm
requires an additional ε parameter which is problem dependent. The ε parameter controls
the granularity or resolution of the solutions in objective space. Smaller values produce
larger, more dense sets while larger values produce smaller sets. In general, the ε values
should be chosen to yield a moderately-sized Pareto approximate set.
Parameter Description Default Value
populationSize The size of the population 100
epsilon The ε values used by the ε-dominance archive,

which can either be a single value or a comma-
separated array

Problem dependent

ε-NSGA-II

ε-NSGA-II combines the generational search of NSGA-II with the guaranteed convergence
provided by an ε-dominance archive Kollat and Reed (2006). It also features randomized
restarts to enhance search and find a diverse set of Pareto optimal solutions. During a
random restart, the algorithm empties the current population and fills it with new, randomly-
generated solutions.
Parameter Description Default Values
populationSize The size of the population 100
epsilon The ε values used by the ε-dominance

archive, which can either be a single value
or a comma-separated array

Problem depen-
dent

injectionRate Controls the percentage of the population
after a restart this is “injected”, or copied,
from the ε-dominance archive

0.25

windowSize Frequency of checking if a randomized
restart should be triggered (number of it-
erations)

100

maxWindowSize The maximum number of iterations be-
tween successive randomized restarts

100

minimumPopulationSize The smallest possible population size
when injecting new solutions after a ran-
domized restart

100

maximumPopulationSize The largest possible population size when
injecting new solutions after a randomized
restart

10000
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GDE3

GDE3 is the third version of the generalized differential evolution algorithm Kukkonen and
Lampinen (2005). The name differential evolution comes from how the algorithm evolves off-
spring. It randomly selects three parents. Next, it computes the difference (the differential)
between two of the parents. Finally, it offsets the remaining parent by this differential.

Parameter Description Default Values
populationSize The size of the population 100
de.crossoverRate The crossover rate for differential evolution 0.1
de.stepSize Control the size of each step taken by differential

evolution
0.5

IBEA

IBEA is a indicator-based MOEA that uses the hypervolume performance indicator as a
means to rank solutions Zitzler and Künzli (2004). Indicator-based algorithms are based on
the idea that a performance indicator, such as hypervolume or additive ε-indicator, highlight
solutions with desirable qualities. The primary disadvantage of indicator-based methods is
that the calculation of the performance indicator can become computationally expensive,
particularly as the number of objectives increases.

Parameter Description Default Value
populationSize The size of the population 100
indicator The indicator function (e.g., "hypervolume", "

epsilon")
"hypervolume"

MOEA/D

MOEA/D is a relatively new optimization algorithm based on the concept of decomposing
the problem into many single-objective formulations . Several version of MOEA/D exist
in the literature. The most common variant seen in the literature, MOEA/D-DE (Li and
Zhang, 2009), is the default implementation in the MOEA Framework.

An extension to MOEA/D-DE variant called MOEA/D-DRA introduced a utility func-
tion that aimed to reduce the amount of “wasted” effort by the algorithm (Zhang et al.,
2009). This variant is enabled by setting the updateUtility parameter to a non-zero
value.
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Parameter Description Default
Value

populationSize The size of the population 100
de.crossoverRate The crossover rate for differential evolution 0.1
de.stepSize Control the size of each step taken by differential

evolution
0.5

pm.rate The mutation rate for polynomial mutation 1/N
pm.distributionIndex The distribution index for polynomial mutation 20.0
neighborhoodSize The size of the neighborhood used for mating,

given as a percentage of the population size
0.1

delta The probability of mating with an individual from
the neighborhood versus the entire population

0.9

eta The maximum number of spots in the population
that an offspring can replace, given as a percentage
of the population size

0.01

updateUtility The frequency, in generations, at which utility val-
ues are updated. If set, this uses the MOEA/D-
DRA variant; if unset, then then MOEA/D-DE
variant is used

Unset

NSGA-II

NSGA-II is one of the first and most widely used MOEAs (Deb et al., 2000). It enhanced it
predecessor, NSGA, by introducing fast non-dominated sorting and using the more compu-
tationally efficient crowding distance metric during survival selection.

Parameter Description Default Value
populationSize The size of the population 100

NSGA-III

NSGA-III is the many-objective successor to NSGA-II, using reference points to direct solu-
tions towards a diverse set (Deb and Jain, 2014). The number of reference points is controlled
by the number of objectives and the divisions parameter. For an M -objective problem,
the number of reference points is:

H =

(
M + divisions− 1

divisions

)
(A.1)

The authors also propose a two-layer approach for divisions for many-objective problems
where an outer and inner division number is specified. To use the two-layer approach,
replace the divisions parameter with divisionsOuter and divisionsInner.
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Parameter Description Default Value
populationSize The size of the population. If unset, the popula-

tion size is equal to the number of reference points
Unset

divisions The number of divisions Problem dependent

OMOPSO

OMOPSO is a multiobjective particle swarm optimization algorithm that includes an ε-
dominance archive to discover a diverse set of Pareto optimal solutions (Sierra and Coello
Coello, 2005). This implementation of OMOPSO differs slightly from the original author’s
implementation in JMetal due to a discrepancy between the author’s code and the paper. The
paper returns the ε-dominance archive while the code returns the leaders. This discrepancy
causes a small difference in performance.

Parameter Description Default Value
populationSize The size of the population 100
archiveSize The size of the archive 100
maxEvaluations The maximum number of evaluations for

adapting non-uniform mutation
25000

mutationProbability The mutation probability for uniform and
non-uniform mutation

1/N

perturbationIndex Controls the shape of the distribution for
uniform and non-uniform mutation

0.5

epsilon The ε values used by the ε-dominance
archive

Problem dependent

PAES

PAES is a multiobjective version of evolution strategy (Knowles and Corne, 1999). PAES
tends to underperform when compared to other MOEAs, but it is often used as a baseline
algorithm for comparisons. Like PESA-II, PAES uses the adaptive grid archive to maintain
a fixed-size archive of solutions.

Parameter Description Default
Value

archiveSize The size of the archive 100
bisections The number of bisections in the adaptive grid

archive
8

pm.rate The mutation rate for polynomial mutation 1/N
pm.distributionIndex The distribution index for polynomial mutation 20.0
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PESA-II

PESA-II is another multiobjective evolutionary algorithm that tends to underperform other
MOEAs but is often used as a baseline algorithm in comparative studies (Corne et al.,
2001). It is the successor to PESA (Corne and Knowles, 2000). Like PAES, PESA-II uses
the adaptive grid archive to maintain a fixed-size archive of solutions.
Parameter Description Default Value
populationSize The size of the population 10
archiveSize The size of the archive 100
bisections The number of bisections in the adaptive grid

archive
8

Random

The random search algorithm simply randomly generates new solutions uniformly throughout
the search space. It is not intended as an “optimization algorithm” per se, but as a way
to compare the performance of other MOEAs against random search. If an optimization
algorithm can not beat random search, then continued use of that optimization algorithm
should be questioned.
Parameter Description Default Value
populationSize This parameter only has a use when parallelizing

evaluations; it controls the number of solutions
that are generated and evaluated in parallel

100

epsilon The ε values used by the ε-dominance archive,
which can either be a single value or a comma-
separated array (this parameter is optional)

Unset

SMPSO

SMPSO is a multiobjective particle swarm optimization algorithm (Nebro et al., 2009).

Parameter Description Default
Value

populationSize The size of the population 100
archiveSize The size of the archive 100
pm.rate The mutation rate for polynomial mutation 1/N
pm.distributionIndex The distribution index for polynomial mutation 20.0

SMS-EMOA

SMS-EMOA is an indicator-based MOEA that uses the volume of the dominated hypervol-
ume to rank individuals (Beume et al., 2007).
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Parameter Description Default Value
populationSize The size of the population 100
offset The reference point offset for computing hypervol-

ume
100

SPEA2

SPEA2 is an older but popular benchmark MOEA that uses the so-called “strength-based”
method for ranking solutions (Zitzler et al., 2002a). The general idea is that the strength or
quality of a solution is related to the strength of solutions it dominates.
Parameter Description Default Value
populationSize The size of the population 100
offspringSize The number of offspring generated every iteration 100
k Crowding is based on the distance to the k-th near-

est neighbor
1

VEGA

VEGA is considered the earliest documented MOEA. While we provide support for VEGA,
other MOEAs should be preferred as they exhibit better performance. VEGA is provided
for its historical significance (Schaffer, 1985).
Parameter Description Default Value
populationSize The size of the population 100
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Appendix B

List of Variation Operators

The following crossover and mutation operators are supported by the MOEA Framework.

Representation Type Abbr.
Real / Integer Simulated Binary Crossover sbx
Real / Integer Polynomial Mutation pm
Real / Integer Differential Evolution de
Real / Integer Parent-Centric Crossover pcx
Real / Integer Simplex Crossover spx
Real / Integer Unimodal Normal Distribution Crossover undx
Real / Integer Uniform Mutation um
Real / Integer Adaptive Metropolis am
Binary Half-Uniform Crossover hux
Binary Bit Flip Mutation bf
Permutation Partially-Mapped Crossover pmx
Permutation Element Insertion insertion
Permutation Element Swap swap
Subset Subset Crossover ssx
Subset Subset Replacement replace
Grammar Single-Point Crossover for Grammars gx
Grammar Uniform Mutation for Grammars gm
Program Branch (Subtree) Crossover bx
Program Point Mutation ptm
Any Single-Point Crossover 1x
Any Two-Point Crossover 2x
Any Uniform Crossover ux
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B.1 Real-Valued Operators

Simulated Binary Crossover (SBX)

SBX attempts to simulate the offspring distribution of binary-encoded single-point crossover
on real-valued decision variables (Deb and Agrawal, 1994). It accepts two parents and
produces two offspring. An example of this distribution, which favors offspring nearer to the
two parents, is shown below.

The distribution index controls the shape of the offspring distribution. Larger values for the
distribution index generates offspring closer to the parents.

Parameters Description Default
Value

sbx.rate The probability that the SBX operator is applied
to a decision variable

1.0

sbx.distributionIndex The shape of the offspring distribution 15.0

Polynomial Mutation (PM)

PM attempts to simulate the offspring distribution of binary-encoded bit-flip mutation on
real-valued decision variables (Deb and Goyal, 1996). Similar to SBX, PM favors offspring
nearer to the parent. It is recommended each decision variable is mutated with a probability
of 1/N , where N is the number of decision variables. This results in one mutation per
offspring on average.

The distribution index controls the shape of the offspring distribution. Larger values for
the distribution index generates offspring closer to the parents.
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Parameters Description Default
Value

pm.rate The probability that the PM operator is applied
to a decision variable

1/N

pm.distributionIndex The shape of the offspring distribution (larger val-
ues produce offspring closer to the parent)

20.0

Differential Evolution (DE)

Differential evolution works by randomly selecting three distinct individuals from a pop-
ulation. A difference vector is calculated between the first two individuals (shown as the
left-most arrow in the figure below), which is subsequently applied to the third individual
(shown as the right-most arrow in the figure below).

The scaling factor parameter adjusts the magnitude of the difference vector, allowing the
user to decrease or increase the magnitude in relation to the actual difference between the
individuals (Storn and Price, 1997). The crossover rate parameter controls the fraction of
decision variables which are modified by the DE operator.

Parameters Description Default Value
de.crossoverRate The fraction of decision variables modified by the

DE operator
0.1

de.stepSize The scaling factor or step size used to adjust the
length of each step taken by the DE operator

0.5

Parent Centric Crossover (PCX)

PCX is a multiparent operator, allowing a user-defined number of parents and offspring (Deb
et al., 2002). Offspring are clustered around the parents, as depicted in the figure below.

145



Parameters Description Default Value
pcx.parents The number of parents 10
pcx.offspring The number of offspring generated by PCX 2
pcx.eta The standard deviation of the normal distribution

controlling the spread of solutions in the direction
of the selected parent

0.1

pcx.zeta The standard deviation of the normal distribution
controlling the spread of solutions in the directions
defined by the remaining parents

0.1

Unimodal Distribution Crossover (UNDX)

UNDX is a multiparent operator, allowing a user-defined number of parents and offspring
(Kita et al., 1999; Deb et al., 2002). Offspring are centered around the centroid, forming a
normal distribution whose shape is controlled by the positions of the parents, as depicted in
the figure below.
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Parameters Description Default Value
undx.parents The number of parents 10
undx.offspring The number of offspring generated by UNDX 2
undx.zeta The standard deviation of the normal distribution

controlling the spread of solutions in the orthogo-
nal directions defined by the parents

0.5

undx.eta The standard deviation of the normal distribution
controlling the spread of solutions in the remaining
orthogonal directions not defined by the parents.
This value is divided by

√
N prior to use, where

N is the number of decision variables.

0.35

Simplex Crossover (SPX)

SPX is a multiparent operator, allowing a user-defined number of parents and offspring
(Tsutsui et al., 1999; Higuchi et al., 2000). The parents form a convex hull, called a simplex.
Offspring are generated uniformly at random from within the simplex. The expansion rate
parameter can be used to expand the size of the simplex beyond the bounds of the parents.
For example, the figure below shows three parent points and the offspring distribution, clearly
filling an expanded triangular simplex.

Parameters Description Default Value
spx.parents The number of parents 10
spx.offspring The number of offspring generated by UNDX 2
spx.epsilon The expansion rate 3

Uniform Mutation (UM)

Each decision variable is mutated by selecting a new value within its bounds uniformly at
random. The figure below depicts the offspring distribution. It is recommended each decision
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variable is mutated with a probability of 1/N , where N is the number of decision variables.
This results in one mutation per offspring on average.

Parameters Description Default Value
um.rate The probability that the UM operator is applied

to a decision variable
1/N

Adaptive Metropolis (AM)

AM is a multiparent operator, allowing a user-defined number of parents and offspring (Vrugt
and Robinson, 2007; Vrugt et al., 2009). AM produces normally-distributed clusters around
each parent, where the shape of the distribution is controlled by the covariance of the parents.

Internally, the Cholesky decomposition is used to update the resulting offspring distri-
bution. Cholesky decomposition requires that its input be positive definite. In order to
guarantee this condition is satisfied, all parents must be unique. In the event that the pos-
itive definite condition is not satisifed, no offspring are produced and an empty array is
returned by

Parameters Description Default Value
am.parents The number of parents 10
am.offspring The number of offspring generated by AM 2
am.coefficient The jump rate coefficient, controlling the standard

deviation of the covariance matrix. The actual
jump rate is calculated as (am.coefficient/

√
n)2

2.4

B.2 Binary / Bit String Operators

Half Uniform Crossover (HUX)

Half-uniform crossover (HUX) operator. Half of the non-matching bits are swapped between
the two parents.

Parameters Description Default Value
hux.rate The probability that the UM operator is applied

to a binary decision variable
1.0

Bit Flip Mutation (BF)

Each bit is flipped (switched from a 0 to a 1, or vice versa) using the specified probability.

Parameters Description Default Value
bf.rate The probability that a bit is flipped 0.01
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B.3 Permutations

Partially Mapped Crossover (PMX)

PMX is similar to two-point crossover, but includes a repair operator to ensure the offspring
are valid permutations (Goldberg and Jr., 1985).

Parameters Description Default Value
pmx.rate The probability that the PMX operator is applied

to a permutation decision variable
1.0

Insertion Mutation

Randomly selects an entry in the permutation and inserts it at some other position in the
permutation.

Parameters Description Default Value
insertion.rate The probability that the insertion operator is ap-

plied to a permutation decision variable
0.3

Swap Mutation

Randomly selects two entries in the permutation and swaps their position.

Parameters Description Default Value
swap.rate The probability that the swap operator is applied

to a permutation decision variable
0.3

B.4 Subsets

Subset Crossover (SSX)

SSX is similar to HUX crossover for binary strings, where half of the non-matching members
are swapped between the two subsets.

Parameters Description Default Value
ssx.rate The probability that the SSX operator is applied

to a subset decision variable
0.9

Replace Mutation

Randomly replaces one of the members in the subset with a non-member.

Parameters Description Default Value
replace.rate The probability that the replace operator is ap-

plied to a subset decision variable
0.3
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B.5 Grammars

Grammar Crossover (GX)

Single-point crossover for grammars. A crossover point is selected in both parents with the
tail portions swapped.

Parameters Description Default Value
gx.rate The probability that the GX operator is applied

to a grammar decision variable
1.0

Grammar Mutation (GM)

Uniform mutation for grammars. Each integer codon in the grammar representation is
uniformly mutated with a specified probability.

Parameters Description Default Value
gm.rate The probability that the GM operator is applied

to a grammar decision variable
1.0

B.6 Program Tree

Subtree Crossover (BX)

Exchanges a randomly-selected subtree from one program with a compatible, randomly-
selected subtree from another program.

Parameters Description Default Value
gm.rate The probability that the BX operator is applied to

a program tree decision variable
1.0

Point Mutation (PTM)

Mutates a program by randomly selecting nodes in the expression tree and replacing the
node with a new, compatible, randomly-selected node.

Parameters Description Default Value
gm.rate The probability that the PTM operator is applied

to a program tree decision variable
1.0

B.7 Generic Operators

Generic operators can be applied to any type. They work by simply swapping the value of
the decision variable between the parents.
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One-Point Crossover (1X)

A crossover point is selected and all decision variables to the left/right are swapped between
the two parents. The two children resulting from this swapping are returned.

Parameters Description Default Value
1x.rate The probability that one-point crossover is applied

to produce offspring
1.0

Two-Point Crossover (2X)

Two crossover points are selected and all decision variables between the two points are
swapped between the two parents. The two children resulting from this swapping are re-
turned.

Parameters Description Default Value
2x.rate The probability that two-point crossover is applied

to produce offspring
1.0

Uniform Crossover (UX)

Crossover operator where each index is swapped with a specified probability.

Parameters Description Default Value
ux.rate The probability that uniform crossover is applied

to produce offspring
1.0
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Appendix C

List of Problems

The following test problems are packaged with the MOEA Framework. Problems marked
with † have maximized objectives. The MOEA Framework negates the values of maximized
objectives. Note that while many problems have similar Pareto fronts, their underlying
problem definitions and properties can differ greatly.

Problem
# of
Vars

# of
Objs

# of
Constrs

Type Pareto Front

Belegundu 2 2 2 Real

Binh 2 2 0 Real

Binh2 2 2 2 Real
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Problem
# of
Vars

# of
Objs

# of
Constrs

Type Pareto Front

Binh3 2 3 0 Real

Binh4 2 3 2 Real

CF1 10 2 1 Real

CF2 10 2 1 Real

CF3 10 2 1 Real

CF4 10 2 1 Real
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Problem
# of
Vars

# of
Objs

# of
Constrs

Type Pareto Front

CF5 10 2 1 Real

CF6 10 2 2 Real

CF7 10 2 2 Real

CF8 10 3 1 Real

CF9 10 3 1 Real

CF10 10 3 1 Real
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Problem
# of
Vars

# of
Objs

# of
Constrs

Type Pareto Front

DTLZ1 N1 4 +N N 0 Real

DTLZ2 N 9 +N N 0 Real

DTLZ3 N 9 +N N 0 Real

DTLZ4 N 9 +N N 0 Real

DTLZ7 N 19 +N N 0 Real

Fonseca 2 2 0 Real

1DTLZ problems are scalable to any number of objectives. Replace N with the number of objectives.
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Problem
# of
Vars

# of
Objs

# of
Constrs

Type Pareto Front

Fonseca2 3 2 0 Real

Jimenez † 2 2 4 Real

Kita † 2 2 3 Real

Kursawe 3 2 0 Real

Laumanns 2 2 0 Real

Lis 2 2 0 Real
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Problem
# of
Vars

# of
Objs

# of
Constrs

Type Pareto Front

LZ1 30 2 0 Real

LZ2 30 2 0 Real

LZ3 30 2 0 Real

LZ4 30 2 0 Real

LZ5 30 2 0 Real

LZ6 10 3 0 Real
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Problem
# of
Vars

# of
Objs

# of
Constrs

Type Pareto Front

LZ7 10 2 0 Real

LZ8 10 2 0 Real

LZ9 30 2 0 Real

Murata 2 2 0 Real

Obayashi † 2 2 1 Real

OKA1 2 2 0 Real

159



Problem
# of
Vars

# of
Objs

# of
Constrs

Type Pareto Front

OKA2 3 2 0 Real

Osyczka 2 2 2 Real

Osyczka2 6 2 6 Real

Poloni † 2 2 0 Real

Quagliarella 16 2 0 Real

Rendon 2 2 0 Real
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Problem
# of
Vars

# of
Objs

# of
Constrs

Type Pareto Front

Rendon2 2 2 0 Real

Schaffer 1 2 0 Real

Schaffer2 1 2 0 Real

Srinivas 2 2 2 Real

Tamaki † 3 3 1 Real

Tanaka 2 2 2 Real
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Problem
# of
Vars

# of
Objs

# of
Constrs

Type Pareto Front

UF1 30 2 0 Real

UF2 30 2 0 Real

UF3 30 2 0 Real

UF4 30 2 0 Real

UF5 30 2 0 Real

UF6 30 2 0 Real
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Problem
# of
Vars

# of
Objs

# of
Constrs

Type Pareto Front

UF7 30 2 0 Real

UF8 30 3 0 Real

UF9 30 3 0 Real

UF10 30 3 0 Real

UF11 30 5 0 Real
UF12 30 5 0 Real
UF13 30 5 0 Real

Viennet 2 3 0 Real

Viennet2 2 3 0 Real
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Problem
# of
Vars

# of
Objs

# of
Constrs

Type Pareto Front

Viennet3 2 3 0 Real

Viennet4 2 3 3 Real

WFG1 N2 9 +N N 0 Real

WFG2 N 9 +N N 0 Real

WFG3 N 9 +N N 0 Real

WFG4 N 9 +N N 0 Real

2WFG problems are scalable to any number of objectives. Replace N with the number of objectives.
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Problem
# of
Vars

# of
Objs

# of
Constrs

Type Pareto Front

WFG5 N 9 +N N 0 Real

WFG6 N 9 +N N 0 Real

WFG7 N 9 +N N 0 Real

WFG8 N 9 +N N 0 Real

WFG9 N 9 +N N 0 Real

ZDT1 30 2 0 Real
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Problem
# of
Vars

# of
Objs

# of
Constrs

Type Pareto Front

ZDT2 30 2 0 Real

ZDT3 30 2 0 Real

ZDT4 10 2 0 Real

ZDT5 80 2 0 Binary

ZDT6 10 2 0 Real
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